Sum of the multiples of two numbers in n natural numbers

Here given code implementation process.

// C program for
// Sum of the multiples of two numbers in n natural numbers
#include <stdio.h>

// Returns the greatest common divisor of two numbers
int gcd(int a, int b)
{
	if (a == 0)
	{
		return b;
	}
	return gcd(b % a, a);
}
int multipleSum(int n, int num)
{
	// Count the multiples occurrence
	int element = n / num;
	return ((element) *(1 + element) *num) / 2;
}
void findMultipleSum(int n, int a, int b)
{
	int result = 0;
	// Display given numbers
	printf("\n Given n : %d", n);
	printf("\n Number a : %d", a);
	printf("\n Number b : %d", b);
	if (n > 0)
	{
		result = multipleSum(n, a) + multipleSum(n, b) - 
          multipleSum(n, (a *b) / gcd(a, b));
	}
	// Display calculated result
	printf("\n Result  : %d\n", result);
}
int main(int argc, char
	const *argv[])
{
	// Test A
	// n = 20
	// a = 3
	// b = 4
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
	// Multiples [3+4+6+8+9+12+15+16+18+20]
	// Result = 111
	findMultipleSum(20, 3, 4);
	// Test B
	// n = 30
	// a = 5
	// b = 6
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
  	//          18,19,20,21,22,23,24,25,26,27,28,29,30]
	// Multiples : [5+6+10+12+15+18+20+24+25+30]
	// Result    = 165
	findMultipleSum(30, 5, 6);
	return 0;
}

Output

 Given n : 20
 Number a : 3
 Number b : 4
 Result  : 111

 Given n : 30
 Number a : 5
 Number b : 6
 Result  : 165
/*
    Java Program for
	Sum of the multiples of two numbers in n natural numbers
*/
public class Multiple
{
	// Returns the greatest common divisor of two numbers
	public int gcd(int a, int b)
	{
		if (a == 0)
		{
			return b;
		}
		return gcd(b % a, a);
	}
	public int multipleSum(int n, int num)
	{
		// Count the multiples occurrence
		int element = n / num;
		return ((element) * (1 + element) * num) / 2;
	}
	public void findMultipleSum(int n, int a, int b)
	{
		int result = 0;
		// Display given numbers
		System.out.print("\n Given n : " + n);
		System.out.print("\n Number a : " + a);
		System.out.print("\n Number b : " + b);
		if (n > 0)
		{
			result = multipleSum(n, a) + multipleSum(n, b) - 
              		 multipleSum(n, (a * b) / gcd(a, b));
		}
		// Display calculated result
		System.out.println("\n Result : " + result);
	}
	public static void main(String[] args)
	{
		Multiple task = new Multiple();
		// Test A
		// n = 20
		// a = 3
		// b = 4
		// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
		// Multiples [3+4+6+8+9+12+15+16+18+20]
		// Result = 111
		task.findMultipleSum(20, 3, 4);
		// Test B
		// n = 30
		// a = 5
		// b = 6
		// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
		//          18,19,20,21,22,23,24,25,26,27,28,29,30]
		// Multiples : [5+6+10+12+15+18+20+24+25+30]
		// Result    = 165
		task.findMultipleSum(30, 5, 6);
	}
}

Output

 Given n : 20
 Number a : 3
 Number b : 4
 Result : 111

 Given n : 30
 Number a : 5
 Number b : 6
 Result : 165
// Include header file
#include <iostream>
using namespace std;
/*
    C++ Program for
	Sum of the multiples of two numbers in n natural numbers
*/
class Multiple
{
	public:
		// Returns the greatest common divisor of two numbers
		int gcd(int a, int b)
		{
			if (a == 0)
			{
				return b;
			}
			return this->gcd(b % a, a);
		}
	int multipleSum(int n, int num)
	{
		// Count the multiples occurrence
		int element = n / num;
		return ((element) * (1 + element) *num) / 2;
	}
	void findMultipleSum(int n, int a, int b)
	{
		int result = 0;
		// Display given numbers
		cout << "\n Given n : " << n;
		cout << "\n Number a : " << a;
		cout << "\n Number b : " << b;
		if (n > 0)
		{
			result = this->multipleSum(n, a) + this->multipleSum(n, b) - 
              this->multipleSum(n, (a *b) / this->gcd(a, b));
		}
		// Display calculated result
		cout << "\n Result : " << result << endl;
	}
};
int main()
{
	Multiple *task = new Multiple();
	// Test A
	// n = 20
	// a = 3
	// b = 4
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
	// Multiples [3+4+6+8+9+12+15+16+18+20]
	// Result = 111
	task->findMultipleSum(20, 3, 4);
	// Test B
	// n = 30
	// a = 5
	// b = 6
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
	//          18,19,20,21,22,23,24,25,26,27,28,29,30]
	// Multiples : [5+6+10+12+15+18+20+24+25+30]
	// Result    = 165
	task->findMultipleSum(30, 5, 6);
	return 0;
}

Output

 Given n : 20
 Number a : 3
 Number b : 4
 Result : 111

 Given n : 30
 Number a : 5
 Number b : 6
 Result : 165
// Include namespace system
using System;
/*
    Csharp Program for
	Sum of the multiples of two numbers in n natural numbers
*/
public class Multiple
{
	// Returns the greatest common divisor of two numbers
	public int gcd(int a, int b)
	{
		if (a == 0)
		{
			return b;
		}
		return this.gcd(b % a, a);
	}
	public int multipleSum(int n, int num)
	{
		// Count the multiples occurrence
		int element = n / num;
		return ((element) * (1 + element) * num) / 2;
	}
	public void findMultipleSum(int n, int a, int b)
	{
		int result = 0;
		// Display given numbers
		Console.Write("\n Given n : " + n);
		Console.Write("\n Number a : " + a);
		Console.Write("\n Number b : " + b);
		if (n > 0)
		{
			result = this.multipleSum(n, a) + this.multipleSum(n, b) -
              this.multipleSum(n, (a * b) / this.gcd(a, b));
		}
		// Display calculated result
		Console.WriteLine("\n Result : " + result);
	}
	public static void Main(String[] args)
	{
		Multiple task = new Multiple();
		// Test A
		// n = 20
		// a = 3
		// b = 4
		// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
		// Multiples [3+4+6+8+9+12+15+16+18+20]
		// Result = 111
		task.findMultipleSum(20, 3, 4);
		// Test B
		// n = 30
		// a = 5
		// b = 6
		// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
		//          18,19,20,21,22,23,24,25,26,27,28,29,30]
		// Multiples : [5+6+10+12+15+18+20+24+25+30]
		// Result    = 165
		task.findMultipleSum(30, 5, 6);
	}
}

Output

 Given n : 20
 Number a : 3
 Number b : 4
 Result : 111

 Given n : 30
 Number a : 5
 Number b : 6
 Result : 165
package main
import "fmt"
/*
    Go Program for
	Sum of the multiples of two numbers in n natural numbers
*/
type Multiple struct {}
func getMultiple() * Multiple {
	var me *Multiple = &Multiple {}
	return me
}
// Returns the greatest common divisor of two numbers
func(this Multiple) gcd(a, b int) int {
	if a == 0 {
		return b
	}
	return this.gcd(b % a, a)
}
func(this Multiple) multipleSum(n, num int) int {
	// Count the multiples occurrence
	var element int = n / num
	return ((element) * (1 + element) * num) / 2
}
func(this Multiple) findMultipleSum(n, a, b int) {
	var result int = 0
	// Display given numbers
	fmt.Print("\n Given n : ", n)
	fmt.Print("\n Number a : ", a)
	fmt.Print("\n Number b : ", b)
	if n > 0 {
		result = (this.multipleSum(n, a) + this.multipleSum(n, b)) - 
				 this.multipleSum(n, (a * b) / this.gcd(a, b))
	}
	// Display calculated result
	fmt.Println("\n Result : ", result)
}
func main() {
	var task * Multiple = getMultiple()
	// Test A
	// n = 20
	// a = 3
	// b = 4
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
	// Multiples [3+4+6+8+9+12+15+16+18+20]
	// Result = 111
	task.findMultipleSum(20, 3, 4)
	// Test B
	// n = 30
	// a = 5
	// b = 6
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
	//          18,19,20,21,22,23,24,25,26,27,28,29,30]
	// Multiples : [5+6+10+12+15+18+20+24+25+30]
	// Result    = 165
	task.findMultipleSum(30, 5, 6)
}

Output

 Given n : 20
 Number a : 3
 Number b : 4
 Result : 111

 Given n : 30
 Number a : 5
 Number b : 6
 Result : 165
<?php
/*
    Php Program for
	Sum of the multiples of two numbers in n natural numbers
*/
class Multiple
{
	// Returns the greatest common divisor of two numbers
	public	function gcd($a, $b)
	{
		if ($a == 0)
		{
			return $b;
		}
		return $this->gcd($b % $a, $a);
	}
	public	function multipleSum($n, $num)
	{
		// Count the multiples occurrence
		$element = (int)($n / $num);
		return (int)((($element) * (1 + $element) * $num) / 2);
	}
	public	function findMultipleSum($n, $a, $b)
	{
		$result = 0;
		// Display given numbers
		echo("\n Given n : ".$n);
		echo("\n Number a : ".$a);
		echo("\n Number b : ".$b);
		if ($n > 0)
		{
			$result = $this->multipleSum($n, $a) + $this->multipleSum($n, $b) -
              $this->multipleSum($n, (int)(($a * $b) / $this->gcd($a, $b)));
		}
		// Display calculated result
		echo("\n Result : ".$result.
			"\n");
	}
}

function main()
{
	$task = new Multiple();
	// Test A
	// n = 20
	// a = 3
	// b = 4
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
	// Multiples [3+4+6+8+9+12+15+16+18+20]
	// Result = 111
	$task->findMultipleSum(20, 3, 4);
	// Test B
	// n = 30
	// a = 5
	// b = 6
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
	//          18,19,20,21,22,23,24,25,26,27,28,29,30]
	// Multiples : [5+6+10+12+15+18+20+24+25+30]
	// Result    = 165
	$task->findMultipleSum(30, 5, 6);
}
main();

Output

 Given n : 20
 Number a : 3
 Number b : 4
 Result : 111

 Given n : 30
 Number a : 5
 Number b : 6
 Result : 165
/*
    Node JS Program for
	Sum of the multiples of two numbers in n natural numbers
*/
class Multiple
{
	// Returns the greatest common divisor of two numbers
	gcd(a, b)
	{
		if (a == 0)
		{
			return b;
		}
		return this.gcd(b % a, a);
	}
	multipleSum(n, num)
	{
		// Count the multiples occurrence
		var element = parseInt(n / num);
		return parseInt(((element) * (1 + element) * num) / 2);
	}
	findMultipleSum(n, a, b)
	{
		var result = 0;
		// Display given numbers
		process.stdout.write("\n Given n : " + n);
		process.stdout.write("\n Number a : " + a);
		process.stdout.write("\n Number b : " + b);
		if (n > 0)
		{
			result = this.multipleSum(n, a) + this.multipleSum(n, b) -
              this.multipleSum(n, parseInt((a * b) / this.gcd(a, b)));
		}
		// Display calculated result
		console.log("\n Result : " + result);
	}
}

function main()
{
	var task = new Multiple();
	// Test A
	// n = 20
	// a = 3
	// b = 4
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
	// Multiples [3+4+6+8+9+12+15+16+18+20]
	// Result = 111
	task.findMultipleSum(20, 3, 4);
	// Test B
	// n = 30
	// a = 5
	// b = 6
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
	//          18,19,20,21,22,23,24,25,26,27,28,29,30]
	// Multiples : [5+6+10+12+15+18+20+24+25+30]
	// Result    = 165
	task.findMultipleSum(30, 5, 6);
}
main();

Output

 Given n : 20
 Number a : 3
 Number b : 4
 Result : 111

 Given n : 30
 Number a : 5
 Number b : 6
 Result : 165
#    Python 3 Program for
# 	Sum of the multiples of two numbers in n natural numbers
class Multiple :
	#  Returns the greatest common divisor of two numbers
	def gcd(self, a, b) :
		if (a == 0) :
			return b
		
		return self.gcd(b % a, a)
	
	def multipleSum(self, n, num) :
		#  Count the multiples occurrence
		element = int(n / num)
		return int(((element) * (1 + element) * num) / 2)
	
	def findMultipleSum(self, n, a, b) :
		result = 0
		#  Display given numbers
		print("\n Given n : ", n, end = "")
		print("\n Number a : ", a, end = "")
		print("\n Number b : ", b, end = "")
		if (n > 0) :
			result = self.multipleSum(n, a) + self.multipleSum(n, b) -self.multipleSum(n, int((a * b) / self.gcd(a, b)))
		
		#  Display calculated result
		print("\n Result : ", result)
	

def main() :
	task = Multiple()
	#  Test A
	#  n = 20
	#  a = 3
	#  b = 4
	#  Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
	#  Multiples [3+4+6+8+9+12+15+16+18+20]
	#  Result = 111
	task.findMultipleSum(20, 3, 4)
	#  Test B
	#  n = 30
	#  a = 5
	#  b = 6
	#  Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
	#           18,19,20,21,22,23,24,25,26,27,28,29,30]
	#  Multiples : [5+6+10+12+15+18+20+24+25+30]
	#  Result    = 165
	task.findMultipleSum(30, 5, 6)

if __name__ == "__main__": main()

Output

 Given n :  20
 Number a :  3
 Number b :  4
 Result :  111

 Given n :  30
 Number a :  5
 Number b :  6
 Result :  165
#    Ruby Program for
# 	Sum of the multiples of two numbers in n natural numbers
class Multiple 
	#  Returns the greatest common divisor of two numbers
	def gcd(a, b) 
		if (a == 0) 
			return b
		end

		return self.gcd(b % a, a)
	end

	def multipleSum(n, num) 
		#  Count the multiples occurrence
		element = n / num
		return ((element) * (1 + element) * num) / 2
	end

	def findMultipleSum(n, a, b) 
		result = 0
		#  Display given numbers
		print("\n Given n : ", n)
		print("\n Number a : ", a)
		print("\n Number b : ", b)
		if (n > 0) 
			result = self.multipleSum(n, a) + self.multipleSum(n, b) - 
              self.multipleSum(n, (a * b) / self.gcd(a, b))
		end

		#  Display calculated result
		print("\n Result : ", result, "\n")
	end

end

def main() 
	task = Multiple.new()
	#  Test A
	#  n = 20
	#  a = 3
	#  b = 4
	#  Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
	#  Multiples [3+4+6+8+9+12+15+16+18+20]
	#  Result = 111
	task.findMultipleSum(20, 3, 4)
	#  Test B
	#  n = 30
	#  a = 5
	#  b = 6
	#  Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
	#           18,19,20,21,22,23,24,25,26,27,28,29,30]
	#  Multiples : [5+6+10+12+15+18+20+24+25+30]
	#  Result    = 165
	task.findMultipleSum(30, 5, 6)
end

main()

Output

 Given n : 20
 Number a : 3
 Number b : 4
 Result : 111

 Given n : 30
 Number a : 5
 Number b : 6
 Result : 165
/*
    Scala Program for
	Sum of the multiples of two numbers in n natural numbers
*/
class Multiple()
{
	// Returns the greatest common divisor of two numbers
	def gcd(a: Int, b: Int): Int = {
		if (a == 0)
		{
			return b;
		}
		return gcd(b % a, a);
	}
	def multipleSum(n: Int, num: Int): Int = {
		// Count the multiples occurrence
		var element: Int = n / num;
		return ((element) * (1 + element) * num) / 2;
	}
	def findMultipleSum(n: Int, a: Int, b: Int): Unit = {
		var result: Int = 0;
		// Display given numbers
		print("\n Given n : " + n);
		print("\n Number a : " + a);
		print("\n Number b : " + b);
		if (n > 0)
		{
			result = multipleSum(n, a) + multipleSum(n, b) - 
              multipleSum(n, (a * b) / gcd(a, b));
		}
		// Display calculated result
		println("\n Result : " + result);
	}
}
object Main
{
	def main(args: Array[String]): Unit = {
		var task: Multiple = new Multiple();
		// Test A
		// n = 20
		// a = 3
		// b = 4
		// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
		// Multiples [3+4+6+8+9+12+15+16+18+20]
		// Result = 111
		task.findMultipleSum(20, 3, 4);
		// Test B
		// n = 30
		// a = 5
		// b = 6
		// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
		//          18,19,20,21,22,23,24,25,26,27,28,29,30]
		// Multiples : [5+6+10+12+15+18+20+24+25+30]
		// Result    = 165
		task.findMultipleSum(30, 5, 6);
	}
}

Output

 Given n : 20
 Number a : 3
 Number b : 4
 Result : 111

 Given n : 30
 Number a : 5
 Number b : 6
 Result : 165
/*
    Swift 4 Program for
	Sum of the multiples of two numbers in n natural numbers
*/
class Multiple
{
	// Returns the greatest common divisor of two numbers
	func gcd(_ a: Int, _ b: Int) -> Int
	{
		if (a == 0)
		{
			return b;
		}
		return self.gcd(b % a, a);
	}
	func multipleSum(_ n: Int, _ num: Int) -> Int
	{
		// Count the multiples occurrence
		let element: Int = n / num;
		return ((element) * (1 + element) * num) / 2;
	}
	func findMultipleSum(_ n: Int, _ a: Int, _ b: Int)
	{
		var result: Int = 0;
		// Display given numbers
		print("\n Given n : ", n, terminator: "");
		print("\n Number a : ", a, terminator: "");
		print("\n Number b : ", b, terminator: "");
		if (n > 0)
		{
			result = self.multipleSum(n, a) + self.multipleSum(n, b) -
              self.multipleSum(n, (a * b) / self.gcd(a, b));
		}
		// Display calculated result
		print("\n Result : ", result);
	}
}
func main()
{
	let task: Multiple = Multiple();
	// Test A
	// n = 20
	// a = 3
	// b = 4
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
	// Multiples [3+4+6+8+9+12+15+16+18+20]
	// Result = 111
	task.findMultipleSum(20, 3, 4);
	// Test B
	// n = 30
	// a = 5
	// b = 6
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
	//          18,19,20,21,22,23,24,25,26,27,28,29,30]
	// Multiples : [5+6+10+12+15+18+20+24+25+30]
	// Result    = 165
	task.findMultipleSum(30, 5, 6);
}
main();

Output

 Given n :  20
 Number a :  3
 Number b :  4
 Result :  111

 Given n :  30
 Number a :  5
 Number b :  6
 Result :  165
/*
    Kotlin Program for
	Sum of the multiples of two numbers in n natural numbers
*/
class Multiple
{
	// Returns the greatest common divisor of two numbers
	fun gcd(a: Int, b: Int): Int
	{
		if (a == 0)
		{
			return b;
		}
		return this.gcd(b % a, a);
	}
	fun multipleSum(n: Int, num: Int): Int
	{
		// Count the multiples occurrence
		val element: Int = n / num;
		return ((element) * (1 + element) * num) / 2;
	}
	fun findMultipleSum(n: Int, a: Int, b: Int): Unit
	{
		var result: Int = 0;
		// Display given numbers
		print("\n Given n : " + n);
		print("\n Number a : " + a);
		print("\n Number b : " + b);
		if (n > 0)
		{
			result = this.multipleSum(n, a) + this.multipleSum(n, b) - 
              this.multipleSum(n, (a * b) / this.gcd(a, b));
		}
		// Display calculated result
		println("\n Result : " + result);
	}
}
fun main(args: Array < String > ): Unit
{
	val task: Multiple = Multiple();
	// Test A
	// n = 20
	// a = 3
	// b = 4
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
	// Multiples [3+4+6+8+9+12+15+16+18+20]
	// Result = 111
	task.findMultipleSum(20, 3, 4);
	// Test B
	// n = 30
	// a = 5
	// b = 6
	// Range : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 , 
	//          18,19,20,21,22,23,24,25,26,27,28,29,30]
	// Multiples : [5+6+10+12+15+18+20+24+25+30]
	// Result    = 165
	task.findMultipleSum(30, 5, 6);
}

Output

 Given n : 20
 Number a : 3
 Number b : 4
 Result : 111

 Given n : 30
 Number a : 5
 Number b : 6
 Result : 165


Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

New Comment







© 2021, kalkicode.com, All rights reserved