Sum of factorials of prime numbers in linked list
Given a linked list which is contains integer values. And our goal is to detect all prime nodes of factorial in this linked list. For example.
Example 1 Linked List : 1 5 4 Prime node : {5} Factorial : {5*4*3*2*1} Result : 120 Example 2 Linked List : 1 4 11 3 Prime node : {11,3} Factorial : {(11*10*9*8*7*6*5*4*3*2*1)+(3*2*1)} {(39916800) + (6)} Result : 39916806 Example 3 Linked List : 5 6 3 9 1 11 Prime node : {5,3,11} Factorial : {...} //factorial of 3,5,11 Result : {39916926}
Assuming that calculate result are under the max number. Here given code implementation process.
// C Program
// Sum of factorials of prime numbers in linked list
#include <stdio.h>
//for malloc function
#include <stdlib.h>
//Linked List Node
struct Node
{
int data;
struct Node *next;
};
//Create a node of linked list
struct Node *create_node(int data)
{
//Create dynamic node
struct Node *node = (struct Node *) malloc(sizeof(struct Node));
if (node == NULL)
{
printf("Memory overflow\n");
}
else
{
//Set initial node value
node->data = data;
node->next = NULL;
}
return node;
}
//Add new node at end of linked list
void insert(struct Node **head, int data)
{
struct Node *node = create_node(data);
if ( *head == NULL)
{
*head = node;
}
else
{
struct Node *temp = *head;
//Find last node
while (temp->next != NULL)
{
temp = temp->next;
}
//Add node at last possition
temp->next = node;
}
}
//Display linked list element
void display(struct Node *head)
{
if (head == NULL)
{
printf("\nEmpty linked list\n");
return;
}
struct Node *temp = head;
printf("\n Linked List : ");
while (temp != NULL)
{
printf(" %d", temp->data);
temp = temp->next;
}
}
//Check that whether given number is prime or not
int is_prime(int num)
{
if (num == 2 || num == 3 || num == 5)
{
return 1;
}
if (num <= 1 || (num % 2 == 0) || (num % 3 == 0) || (num % 5 == 0))
{
return 0;
}
int i = 11;
while ((i *i) <= num)
{
if (num % i == 0)
{
//When number is divisible of current i value
return 0;
}
else if (num % (i + 2) == 0)
{
//When number is divisible of current i + 2 value
return 0;
}
i = i + 6;
}
return 1;
}
int factorials(int num)
{
int i = 1;
int result = 1;
while (i <= num)
{
result *= i;
i++;
}
return result;
}
//Calculate the sum of all prime factorial in given linked list
void prime_factorial_sum(struct Node *head)
{
if (head == NULL)
{
printf("\n Empty Linked List \n");
return;
}
//Define resultant variable
int result = 0;
//Get first node of linked list
struct Node *temp = head;
//iterate linked list node
while (temp != NULL)
{
if (is_prime(temp->data))
{
//Add the factorial of prime number
result += factorials(temp->data);
}
//Visit to next node
temp = temp->next;
}
//Display of calculated result
printf("\n Sum Of Prime Factorials : %d\n", result);
}
int main()
{
struct Node *head = NULL;
//Create Normal linked list
insert( &head, 5);
insert( &head, 6);
insert( &head, 3);
insert( &head, 9);
insert( &head, 1);
insert( &head, 11);
display(head);
prime_factorial_sum(head);
return 0;
}
Output
Linked List : 5 6 3 9 1 11
Sum Of Prime Factorials : 39916926
// Java Program
// Sum of factorials of prime numbers in linked list
//Node of LinkedList
class Node
{
public int data;
public Node next;
public Node(int data)
{
//Set node value
this.data = data;
this.next = null;
}
}
class MyLinkedList
{
public Node head;
public Node tail;
//Class constructors
public MyLinkedList()
{
this.head = null;
this.tail = null;
}
//insert node at last of linke list
public void insert(int data)
{
//Create a node
Node node = new Node(data);
if (this.head == null)
{
//When linked list empty add first node
this.head = node;
this.tail = node;
}
else
{
//Add new node at end of linked list
this.tail.next = node;
this.tail = node;
}
}
//Display linked list element
public void display()
{
if (this.head == null)
{
System.out.print("\nEmpty linked list\n");
return;
}
Node temp = this.head;
System.out.print("\n Linked List : ");
while (temp != null)
{
System.out.print(" " + temp.data);
temp = temp.next;
}
}
//Check that whether given number is prime or not
public boolean is_prime(int num)
{
if (num == 2 || num == 3 || num == 5)
{
return true;
}
if (num <= 1 || (num % 2 == 0) || (num % 3 == 0) || (num % 5 == 0))
{
return false;
}
int i = 11;
while ((i * i) <= num)
{
if (num % i == 0)
{
//When number is divisible of current i value
return false;
}
else if (num % (i + 2) == 0)
{
//When number is divisible of current i + 2 value
return false;
}
i = i + 6;
}
return true;
}
public int factorials(int num)
{
int i = 1;
int result = 1;
while (i <= num)
{
result *= i;
i++;
}
return result;
}
//Calculate the sum of all prime factorial in given linked list
public void prime_factorial_sum()
{
if (this.head == null)
{
System.out.print("\n Empty Linked List \n");
return;
}
//Define resultant variable
int result = 0;
//Get first node of linked list
Node temp = this.head;
//iterate linked list node
while (temp != null)
{
if (is_prime(temp.data) == true)
{
//Add the factorial of prime number
result += factorials(temp.data);
}
//Visit to next node
temp = temp.next;
}
//Display of calculated result
System.out.print("\n Sum Of Prime Factorials : " + result + "\n");
}
public static void main(String[] args)
{
MyLinkedList obj = new MyLinkedList();
//Add node in linked list
obj.insert(5);
obj.insert(6);
obj.insert(3);
obj.insert(9);
obj.insert(1);
obj.insert(11);
obj.display();
obj.prime_factorial_sum();
}
}
Output
Linked List : 5 6 3 9 1 11
Sum Of Prime Factorials : 39916926
//Include header file
#include <iostream>
using namespace std;
// C++ Program
// Sum of factorials of prime numbers in linked list
//Node of LinkedList
class Node
{
public: int data;
Node * next;
Node(int data)
{
//Set node value
this->data = data;
this->next = NULL;
}
};
class MyLinkedList
{
public: Node * head;
Node * tail;
//Class constructors
MyLinkedList()
{
this->head = NULL;
this->tail = NULL;
}
//insert node at last of linke list
void insert(int data)
{
//Create a node
Node * node = new Node(data);
if (this->head == NULL)
{
//When linked list empty add first node
this->head = node;
this->tail = node;
}
else
{
//Add new node at end of linked list
this->tail->next = node;
this->tail = node;
}
}
//Display linked list element
void display()
{
if (this->head == NULL)
{
cout << "\nEmpty linked list\n";
return;
}
Node * temp = this->head;
cout << "\n Linked List : ";
while (temp != NULL)
{
cout << " " << temp->data;
temp = temp->next;
}
}
//Check that whether given number is prime or not
bool is_prime(int num)
{
if (num == 2 || num == 3 || num == 5)
{
return true;
}
if (num <= 1 || (num % 2 == 0) || (num % 3 == 0) || (num % 5 == 0))
{
return false;
}
int i = 11;
while ((i * i) <= num)
{
if (num % i == 0)
{
//When number is divisible of current i value
return false;
}
else if (num % (i + 2) == 0)
{
//When number is divisible of current i + 2 value
return false;
}
i = i + 6;
}
return true;
}
int factorials(int num)
{
int i = 1;
int result = 1;
while (i <= num)
{
result *= i;
i++;
}
return result;
}
//Calculate the sum of all prime factorial in given linked list
void prime_factorial_sum()
{
if (this->head == NULL)
{
cout << "\n Empty Linked List \n";
return;
}
//Define resultant variable
int result = 0;
//Get first node of linked list
Node * temp = this->head;
//iterate linked list node
while (temp != NULL)
{
if (this->is_prime(temp->data) == true)
{
//Add the factorial of prime number
result += this->factorials(temp->data);
}
//Visit to next node
temp = temp->next;
}
//Display of calculated result
cout << "\n Sum Of Prime Factorials : " << result << "\n";
}
};
int main()
{
MyLinkedList obj = MyLinkedList();
//Add node in linked list
obj.insert(5);
obj.insert(6);
obj.insert(3);
obj.insert(9);
obj.insert(1);
obj.insert(11);
obj.display();
obj.prime_factorial_sum();
return 0;
}
Output
Linked List : 5 6 3 9 1 11
Sum Of Prime Factorials : 39916926
//Include namespace system
using System;
// C# Program
// Sum of factorials of prime numbers in linked list
//Node of LinkedList
class Node
{
public int data;
public Node next;
public Node(int data)
{
//Set node value
this.data = data;
this.next = null;
}
}
class MyLinkedList
{
public Node head;
public Node tail;
//Class constructors
public MyLinkedList()
{
this.head = null;
this.tail = null;
}
//insert node at last of linke list
public void insert(int data)
{
//Create a node
Node node = new Node(data);
if (this.head == null)
{
//When linked list empty add first node
this.head = node;
this.tail = node;
}
else
{
//Add new node at end of linked list
this.tail.next = node;
this.tail = node;
}
}
//Display linked list element
public void display()
{
if (this.head == null)
{
Console.Write("\nEmpty linked list\n");
return;
}
Node temp = this.head;
Console.Write("\n Linked List : ");
while (temp != null)
{
Console.Write(" " + temp.data);
temp = temp.next;
}
}
//Check that whether given number is prime or not
public Boolean is_prime(int num)
{
if (num == 2 || num == 3 || num == 5)
{
return true;
}
if (num <= 1 || (num % 2 == 0) || (num % 3 == 0) || (num % 5 == 0))
{
return false;
}
int i = 11;
while ((i * i) <= num)
{
if (num % i == 0)
{
//When number is divisible of current i value
return false;
}
else if (num % (i + 2) == 0)
{
//When number is divisible of current i + 2 value
return false;
}
i = i + 6;
}
return true;
}
public int factorials(int num)
{
int i = 1;
int result = 1;
while (i <= num)
{
result *= i;
i++;
}
return result;
}
//Calculate the sum of all prime factorial in given linked list
public void prime_factorial_sum()
{
if (this.head == null)
{
Console.Write("\n Empty Linked List \n");
return;
}
//Define resultant variable
int result = 0;
//Get first node of linked list
Node temp = this.head;
//iterate linked list node
while (temp != null)
{
if (is_prime(temp.data) == true)
{
//Add the factorial of prime number
result += factorials(temp.data);
}
//Visit to next node
temp = temp.next;
}
//Display of calculated result
Console.Write("\n Sum Of Prime Factorials : " + result + "\n");
}
public static void Main(String[] args)
{
MyLinkedList obj = new MyLinkedList();
//Add node in linked list
obj.insert(5);
obj.insert(6);
obj.insert(3);
obj.insert(9);
obj.insert(1);
obj.insert(11);
obj.display();
obj.prime_factorial_sum();
}
}
Output
Linked List : 5 6 3 9 1 11
Sum Of Prime Factorials : 39916926
<?php
// Php Program
// Sum of factorials of prime numbers in linked list
//Node of LinkedList
class Node
{
public $data;
public $next;
function __construct($data)
{
//Set node value
$this->data = $data;
$this->next = null;
}
}
class MyLinkedList
{
public $head;
public $tail;
//Class constructors
function __construct()
{
$this->head = null;
$this->tail = null;
}
//insert node at last of linke list
public function insert($data)
{
//Create a node
$node = new Node($data);
if ($this->head == null)
{
//When linked list empty add first node
$this->head = $node;
$this->tail = $node;
}
else
{
//Add new node at end of linked list
$this->tail->next = $node;
$this->tail = $node;
}
}
//Display linked list element
public function display()
{
if ($this->head == null)
{
echo "\nEmpty linked list\n";
return;
}
$temp = $this->head;
echo "\n Linked List : ";
while ($temp != null)
{
echo " ". $temp->data;
$temp = $temp->next;
}
}
//Check that whether given number is prime or not
public function is_prime($num)
{
if ($num == 2 || $num == 3 || $num == 5)
{
return true;
}
if ($num <= 1 || ($num % 2 == 0) || ($num % 3 == 0) || ($num % 5 == 0))
{
return false;
}
$i = 11;
while (($i * $i) <= $num)
{
if ($num % $i == 0)
{
//When number is divisible of current i value
return false;
}
else if ($num % ($i + 2) == 0)
{
//When number is divisible of current i + 2 value
return false;
}
$i = $i + 6;
}
return true;
}
public function factorials($num)
{
$i = 1;
$result = 1;
while ($i <= $num)
{
$result *= $i;
$i++;
}
return $result;
}
//Calculate the sum of all prime factorial in given linked list
public function prime_factorial_sum()
{
if ($this->head == null)
{
echo "\n Empty Linked List \n";
return;
}
//Define resultant variable
$result = 0;
//Get first node of linked list
$temp = $this->head;
//iterate linked list node
while ($temp != null)
{
if ($this->is_prime($temp->data) == true)
{
//Add the factorial of prime number
$result += $this->factorials($temp->data);
}
//Visit to next node
$temp = $temp->next;
}
//Display of calculated result
echo "\n Sum Of Prime Factorials : ". $result ."\n";
}
}
function main()
{
$obj = new MyLinkedList();
//Add node in linked list
$obj->insert(5);
$obj->insert(6);
$obj->insert(3);
$obj->insert(9);
$obj->insert(1);
$obj->insert(11);
$obj->display();
$obj->prime_factorial_sum();
}
main();
Output
Linked List : 5 6 3 9 1 11
Sum Of Prime Factorials : 39916926
// Node Js Program
// Sum of factorials of prime numbers in linked list
//Node of LinkedList
class Node
{
constructor(data)
{
//Set node value
this.data = data;
this.next = null;
}
}
class MyLinkedList
{
//Class constructors
constructor()
{
this.head = null;
this.tail = null;
}
//insert node at last of linke list
insert(data)
{
//Create a node
var node = new Node(data);
if (this.head == null)
{
//When linked list empty add first node
this.head = node;
this.tail = node;
}
else
{
//Add new node at end of linked list
this.tail.next = node;
this.tail = node;
}
}
//Display linked list element
display()
{
if (this.head == null)
{
process.stdout.write("\nEmpty linked list\n");
return;
}
var temp = this.head;
process.stdout.write("\n Linked List : ");
while (temp != null)
{
process.stdout.write(" " + temp.data);
temp = temp.next;
}
}
//Check that whether given number is prime or not
is_prime(num)
{
if (num == 2 || num == 3 || num == 5)
{
return true;
}
if (num <= 1 || (num % 2 == 0) || (num % 3 == 0) || (num % 5 == 0))
{
return false;
}
var i = 11;
while ((i * i) <= num)
{
if (num % i == 0)
{
//When number is divisible of current i value
return false;
}
else if (num % (i + 2) == 0)
{
//When number is divisible of current i + 2 value
return false;
}
i = i + 6;
}
return true;
}
factorials(num)
{
var i = 1;
var result = 1;
while (i <= num)
{
result *= i;
i++;
}
return result;
}
//Calculate the sum of all prime factorial in given linked list
prime_factorial_sum()
{
if (this.head == null)
{
process.stdout.write("\n Empty Linked List \n");
return;
}
//Define resultant variable
var result = 0;
//Get first node of linked list
var temp = this.head;
//iterate linked list node
while (temp != null)
{
if (this.is_prime(temp.data) == true)
{
//Add the factorial of prime number
result += this.factorials(temp.data);
}
//Visit to next node
temp = temp.next;
}
//Display of calculated result
process.stdout.write("\n Sum Of Prime Factorials : " + result + "\n");
}
}
function main()
{
var obj = new MyLinkedList();
//Add node in linked list
obj.insert(5);
obj.insert(6);
obj.insert(3);
obj.insert(9);
obj.insert(1);
obj.insert(11);
obj.display();
obj.prime_factorial_sum();
}
main();
Output
Linked List : 5 6 3 9 1 11
Sum Of Prime Factorials : 39916926
# Python 3 Program
# Sum of factorials of prime numbers in linked list
# Node of LinkedList
class Node :
def __init__(self, data) :
# Set node value
self.data = data
self.next = None
class MyLinkedList :
# Class constructors
def __init__(self) :
self.head = None
self.tail = None
# insert node at last of linke list
def insert(self, data) :
# Create a node
node = Node(data)
if (self.head == None) :
# When linked list empty add first node
self.head = node
self.tail = node
else :
# Add new node at end of linked list
self.tail.next = node
self.tail = node
# Display linked list element
def display(self) :
if (self.head == None) :
print("\nEmpty linked list\n", end = "")
return
temp = self.head
print("\n Linked List : ", end = "")
while (temp != None) :
print(" ", temp.data, end = "")
temp = temp.next
# Check that whether given number is prime or not
def is_prime(self, num) :
if (num == 2 or num == 3 or num == 5) :
return True
if (num <= 1 or(num % 2 == 0) or(num % 3 == 0) or(num % 5 == 0)) :
return False
i = 11
while ((i * i) <= num) :
if (num % i == 0) :
# When number is divisible of current i value
return False
elif(num % (i + 2) == 0) :
# When number is divisible of current i + 2 value
return False
i = i + 6
return True
def factorials(self, num) :
i = 1
result = 1
while (i <= num) :
result *= i
i += 1
return result
# Calculate the sum of all prime factorial in given linked list
def prime_factorial_sum(self) :
if (self.head == None) :
print("\n Empty Linked List \n", end = "")
return
# Define resultant variable
result = 0
# Get first node of linked list
temp = self.head
# iterate linked list node
while (temp != None) :
if (self.is_prime(temp.data) == True) :
# Add the factorial of prime number
result += self.factorials(temp.data)
# Visit to next node
temp = temp.next
# Display of calculated result
print("\n Sum Of Prime Factorials : ", result ,"\n", end = "")
def main() :
obj = MyLinkedList()
# Add node in linked list
obj.insert(5)
obj.insert(6)
obj.insert(3)
obj.insert(9)
obj.insert(1)
obj.insert(11)
obj.display()
obj.prime_factorial_sum()
if __name__ == "__main__": main()
Output
Linked List : 5 6 3 9 1 11
Sum Of Prime Factorials : 39916926
# Ruby Program
# Sum of factorials of prime numbers in linked list
# Node of LinkedList
class Node
# Define the accessor and reader of class Node
attr_reader :data, :next
attr_accessor :data, :next
def initialize(data)
# Set node value
self.data = data
self.next = nil
end
end
class MyLinkedList
# Define the accessor and reader of class MyLinkedList
attr_reader :head, :tail
attr_accessor :head, :tail
# Class constructors
def initialize()
self.head = nil
self.tail = nil
end
# insert node at last of linke list
def insert(data)
# Create a node
node = Node.new(data)
if (self.head == nil)
# When linked list empty add first node
self.head = node
self.tail = node
else
# Add new node at end of linked list
self.tail.next = node
self.tail = node
end
end
# Display linked list element
def display()
if (self.head == nil)
print("\nEmpty linked list\n")
return
end
temp = self.head
print("\n Linked List : ")
while (temp != nil)
print(" ", temp.data)
temp = temp.next
end
end
# Check that whether given number is prime or not
def is_prime(num)
if (num == 2 || num == 3 || num == 5)
return true
end
if (num <= 1 || (num % 2 == 0) || (num % 3 == 0) || (num % 5 == 0))
return false
end
i = 11
while ((i * i) <= num)
if (num % i == 0)
# When number is divisible of current i value
return false
elsif(num % (i + 2) == 0)
# When number is divisible of current i + 2 value
return false
end
i = i + 6
end
return true
end
def factorials(num)
i = 1
result = 1
while (i <= num)
result *= i
i += 1
end
return result
end
# Calculate the sum of all prime factorial in given linked list
def prime_factorial_sum()
if (self.head == nil)
print("\n Empty Linked List \n")
return
end
# Define resultant variable
result = 0
# Get first node of linked list
temp = self.head
# iterate linked list node
while (temp != nil)
if (self.is_prime(temp.data) == true)
# Add the factorial of prime number
result += self.factorials(temp.data)
end
# Visit to next node
temp = temp.next
end
# Display of calculated result
print("\n Sum Of Prime Factorials : ", result ,"\n")
end
end
def main()
obj = MyLinkedList.new()
# Add node in linked list
obj.insert(5)
obj.insert(6)
obj.insert(3)
obj.insert(9)
obj.insert(1)
obj.insert(11)
obj.display()
obj.prime_factorial_sum()
end
main()
Output
Linked List : 5 6 3 9 1 11
Sum Of Prime Factorials : 39916926
// Scala Program
// Sum of factorials of prime numbers in linked list
//Node of LinkedList
class Node(var data: Int,
var next: Node)
{
def this(data: Int)
{
this(data, null);
}
}
class MyLinkedList(var head: Node,
var tail: Node)
{
//Class constructors
def this()
{
this(null, null);
}
//insert node at last of linke list
def insert(data: Int): Unit = {
//Create a node
var node: Node = new Node(data);
if (this.head == null)
{
//When linked list empty add first node
this.head = node;
this.tail = node;
}
else
{
//Add new node at end of linked list
this.tail.next = node;
this.tail = node;
}
}
//Display linked list element
def display(): Unit = {
if (this.head == null)
{
print("\nEmpty linked list\n");
return;
}
var temp: Node = this.head;
print("\n Linked List : ");
while (temp != null)
{
print(" " + temp.data);
temp = temp.next;
}
}
//Check that whether given number is prime or not
def is_prime(num: Int): Boolean = {
if (num == 2 || num == 3 || num == 5)
{
return true;
}
if (num <= 1 || (num % 2 == 0) || (num % 3 == 0) || (num % 5 == 0))
{
return false;
}
var i: Int = 11;
while ((i * i) <= num)
{
if (num % i == 0)
{
//When number is divisible of current i value
return false;
}
else if (num % (i + 2) == 0)
{
//When number is divisible of current i + 2 value
return false;
}
i = i + 6;
}
return true;
}
def factorials(num: Int): Int = {
var i: Int = 1;
var result: Int = 1;
while (i <= num)
{
result *= i;
i += 1;
}
return result;
}
//Calculate the sum of all prime factorial in given linked list
def prime_factorial_sum(): Unit = {
if (this.head == null)
{
print("\n Empty Linked List \n");
return;
}
//Define resultant variable
var result: Int = 0;
//Get first node of linked list
var temp: Node = this.head;
//iterate linked list node
while (temp != null)
{
if (is_prime(temp.data) == true)
{
//Add the factorial of prime number
result += factorials(temp.data);
}
//Visit to next node
temp = temp.next;
}
//Display of calculated result
print("\n Sum Of Prime Factorials : " + result + "\n");
}
}
object Main
{
def main(args: Array[String]): Unit = {
var obj: MyLinkedList = new MyLinkedList();
//Add node in linked list
obj.insert(5);
obj.insert(6);
obj.insert(3);
obj.insert(9);
obj.insert(1);
obj.insert(11);
obj.display();
obj.prime_factorial_sum();
}
}
Output
Linked List : 5 6 3 9 1 11
Sum Of Prime Factorials : 39916926
// Swift Program
// Sum of factorials of prime numbers in linked list
//Node of LinkedList
class Node
{
var data: Int;
var next: Node? ;
init(_ data: Int)
{
//Set node value
self.data = data;
self.next = nil;
}
}
class MyLinkedList
{
var head: Node? ;
var tail: Node? ;
//Class constructors
init()
{
self.head = nil;
self.tail = nil;
}
//insert node at last of linke list
func insert(_ data: Int)
{
//Create a node
let node: Node? = Node(data);
if (self.head == nil)
{
//When linked list empty add first node
self.head = node;
self.tail = node;
}
else
{
//Add new node at end of linked list
self.tail!.next = node;
self.tail = node;
}
}
//Display linked list element
func display()
{
if (self.head == nil)
{
print("\nEmpty linked list\n", terminator: "");
return;
}
var temp: Node? = self.head;
print("\n Linked List : ", terminator: "");
while (temp != nil)
{
print(" ", temp!.data, terminator: "");
temp = temp!.next;
}
}
//Check that whether given number is prime or not
func is_prime(_ num: Int) -> Bool
{
if (num == 2 || num == 3 || num == 5)
{
return true;
}
if (num <= 1 || (num % 2 == 0) || (num % 3 == 0) || (num % 5 == 0))
{
return false;
}
var i: Int = 11;
while ((i * i) <= num)
{
if (num % i == 0)
{
//When number is divisible of current i value
return false;
}
else if (num % (i + 2) == 0)
{
//When number is divisible of current i + 2 value
return false;
}
i = i + 6;
}
return true;
}
func factorials(_ num: Int) -> Int
{
var i: Int = 1;
var result: Int = 1;
while (i <= num)
{
result *= i;
i += 1;
}
return result;
}
//Calculate the sum of all prime factorial in given linked list
func prime_factorial_sum()
{
if (self.head == nil)
{
print("\n Empty Linked List \n", terminator: "");
return;
}
//Define resultant variable
var result: Int = 0;
//Get first node of linked list
var temp: Node? = self.head;
//iterate linked list node
while (temp != nil)
{
if (self.is_prime(temp!.data) == true)
{
//Add the factorial of prime number
result += self.factorials(temp!.data);
}
//Visit to next node
temp = temp!.next;
}
//Display of calculated result
print("\n Sum Of Prime Factorials : ", result ,"\n", terminator: "");
}
}
func main()
{
let obj: MyLinkedList = MyLinkedList();
//Add node in linked list
obj.insert(5);
obj.insert(6);
obj.insert(3);
obj.insert(9);
obj.insert(1);
obj.insert(11);
obj.display();
obj.prime_factorial_sum();
}
main();
Output
Linked List : 5 6 3 9 1 11
Sum Of Prime Factorials : 39916926
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment