Printing brackets in matrix chain multiplication
Here given code implementation process.
// Java Program
// Printing brackets in matrix chain multiplication
public class Multiplication
{
public char name;
public int count;
public Multiplication()
{
this.name = 'A';
this.count = 0;
}
public void showBrackets(int i, int j, int[][] brackets)
{
if (i == j)
{
if (count != 0)
{
System.out.print(name + count);
}
else
{
System.out.print(name);
}
if (name == 'Z')
{
// Useful when dimension size is exceed A..Z
name = 'A';
count++;
}
else
{
// Change name
name++;
}
}
else
{
System.out.print("(");
showBrackets(i, brackets[i][j], brackets);
showBrackets(brackets[i][j] + 1, j, brackets);
System.out.print(")");
}
}
public void matrixChainMultiplication(int[] dims, int size)
{
int n = size - 1;
int[][] result = new int[n][n];
int[][] brackets = new int[n][n];
int cost = 0;
int j = 0;
for (int len = 1; len < n; len++)
{
for (int i = 0; i < n - len; i++)
{
j = i + len;
result[i][j] = Integer.MAX_VALUE;
for (int k = i; k < j; k++)
{
cost = result[i][k] + result[k + 1][j] +
dims[i] * dims[k + 1] * dims[j + 1];
if (cost < result[i][j])
{
result[i][j] = cost;
brackets[i][j] = k;
}
}
}
}
this.name = 'A';
this.count = 0;
// Show Brackets
showBrackets(0, n - 1, brackets);
System.out.print("\n");
}
public static void main(String args[])
{
Multiplication task = new Multiplication();
int[] dims1 = {
10 , 16 , 12 , 6 , 14
};
int[] dims2 = {
8 , 20 , 16 , 10 , 6
};
/*
dims = [10 , 16 , 12 , 6 , 14]
matri× A = 10 × 16
matri× B = 16 × 12
matri× C = 12 × 6
matri× D = 6 × 14
--------------------
(A(BC))D
(16×12×6) + (10×16×6) + (10×6×14)
= 2952
*/
int n = dims1.length;
task.matrixChainMultiplication(dims1, n);
n = dims2.length;
/*
dims = [8 , 20 , 16 , 10 , 6]
matri× A = 8 × 20
matri× B = 20 × 16
matri× C = 16 × 10
matri× D = 10 × 6
A(B(CD)) = 3840
(16×10×6) + (20×16×6 ) + (8×20×6 ) = 3840
*/
task.matrixChainMultiplication(dims2, n);
}
}
Output
((A(BC))D)
(A(B(CD)))
// Include header file
#include <iostream>
#include <vector>
#include <limits.h>
using namespace std;
// C++ Program
// Printing brackets in matrix chain multiplication
class Multiplication
{
public: char name;
int count;
Multiplication()
{
this->name = 'A';
this->count = 0;
}
void showBrackets(int i, int j, vector<vector<int>> brackets)
{
if (i == j)
{
if (this->count != 0)
{
cout << this->name + this->count;
}
else
{
cout << this->name;
}
if (this->name == 'Z')
{
// Useful when dimension size is exceed A..Z
this->name = 'A';
this->count++;
}
else
{
// Change name
this->name++;
}
}
else
{
cout << "(";
this->showBrackets(i, brackets[i][j], brackets);
this->showBrackets(brackets[i][j] + 1, j, brackets);
cout << ")";
}
}
void matrixChainMultiplication(int dims[], int size)
{
int n = size - 1;
vector<vector<int>> result (n,vector<int>(n,0));
vector<vector<int>> brackets (n,vector<int>(n,0));
int cost = 0;
int j = 0;
for (int len = 1; len < n; len++)
{
for (int i = 0; i < n - len; i++)
{
j = i + len;
result[i][j] = INT_MAX;
for (int k = i; k < j; k++)
{
cost = result[i][k] + result[k + 1][j] +
dims[i] *dims[k + 1] *dims[j + 1];
if (cost < result[i][j])
{
result[i][j] = cost;
brackets[i][j] = k;
}
}
}
}
this->name = 'A';
this->count = 0;
// Show Brackets
this->showBrackets(0, n - 1, brackets);
cout << "\n";
}
};
int main()
{
Multiplication *task = new Multiplication();
int dims1[] = {
10 , 16 , 12 , 6 , 14
};
int dims2[] = {
8 , 20 , 16 , 10 , 6
};
/*
dims = [10 , 16 , 12 , 6 , 14]
matri× A = 10 × 16
matri× B = 16 × 12
matri× C = 12 × 6
matri× D = 6 × 14
--------------------
(A(BC))D
(16×12×6) + (10×16×6) + (10×6×14)
= 2952
*/
int n = sizeof(dims1) / sizeof(dims1[0]);
task->matrixChainMultiplication(dims1, n);
n = sizeof(dims2) / sizeof(dims2[0]);
/*
dims = [8 , 20 , 16 , 10 , 6]
matri× A = 8 × 20
matri× B = 20 × 16
matri× C = 16 × 10
matri× D = 10 × 6
A(B(CD)) = 3840
(16×10×6) + (20×16×6 ) + (8×20×6 ) = 3840
*/
task->matrixChainMultiplication(dims2, n);
return 0;
}
Output
((A(BC))D)
(A(B(CD)))
// Include namespace system
using System;
// Csharp Program
// Printing brackets in matrix chain multiplication
public class Multiplication
{
public char name;
public int count;
public Multiplication()
{
this.name = 'A';
this.count = 0;
}
public void showBrackets(int i, int j, int[,] brackets)
{
if (i == j)
{
if (this.count != 0)
{
Console.Write(this.name + this.count);
}
else
{
Console.Write(this.name);
}
if (this.name == 'Z')
{
// Useful when dimension size is exceed A..Z
this.name = 'A';
this.count++;
}
else
{
// Change name
this.name++;
}
}
else
{
Console.Write("(");
this.showBrackets(i, brackets[i,j], brackets);
this.showBrackets(brackets[i,j] + 1, j, brackets);
Console.Write(")");
}
}
public void matrixChainMultiplication(int[] dims, int size)
{
int n = size - 1;
int[,] result = new int[n,n];
int[,] brackets = new int[n,n];
int cost = 0;
int j = 0;
for (int len = 1; len < n; len++)
{
for (int i = 0; i < n - len; i++)
{
j = i + len;
result[i,j] = int.MaxValue;
for (int k = i; k < j; k++)
{
cost = result[i,k] + result[k + 1,j] + dims[i] *
dims[k + 1] * dims[j + 1];
if (cost < result[i,j])
{
result[i,j] = cost;
brackets[i,j] = k;
}
}
}
}
this.name = 'A';
this.count = 0;
// Show Brackets
this.showBrackets(0, n - 1, brackets);
Console.Write("\n");
}
public static void Main(String[] args)
{
Multiplication task = new Multiplication();
int[] dims1 = {
10 , 16 , 12 , 6 , 14
};
int[] dims2 = {
8 , 20 , 16 , 10 , 6
};
/*
dims = [10 , 16 , 12 , 6 , 14]
matri× A = 10 × 16
matri× B = 16 × 12
matri× C = 12 × 6
matri× D = 6 × 14
--------------------
(A(BC))D
(16×12×6) + (10×16×6) + (10×6×14)
= 2952
*/
int n = dims1.Length;
task.matrixChainMultiplication(dims1, n);
n = dims2.Length;
/*
dims = [8 , 20 , 16 , 10 , 6]
matri× A = 8 × 20
matri× B = 20 × 16
matri× C = 16 × 10
matri× D = 10 × 6
A(B(CD)) = 3840
(16×10×6) + (20×16×6 ) + (8×20×6 ) = 3840
*/
task.matrixChainMultiplication(dims2, n);
}
}
Output
((A(BC))D)
(A(B(CD)))
package main
import "math"
import "fmt"
// Go Program
// Printing brackets in matrix chain multiplication
type Multiplication struct {
name byte
count int
}
func getMultiplication() * Multiplication {
var me *Multiplication = &Multiplication {}
me.name = 'A'
me.count = 0
return me
}
func(this *Multiplication) showBrackets(i int,
j int, brackets[][] int) {
if i == j {
if this.count != 0 {
fmt.Print(string(this.name), this.count)
} else {
fmt.Print(string(this.name))
}
if this.name == 'Z' {
// Useful when dimension size is exceed A..Z
this.name = 'A'
this.count++
} else {
// Change name
this.name = this.name + 1
}
} else {
fmt.Print("(")
this.showBrackets(i, brackets[i][j], brackets)
this.showBrackets(brackets[i][j] + 1, j, brackets)
fmt.Print(")")
}
}
func(this *Multiplication) matrixChainMultiplication(dims[] int, size int) {
var n int = size - 1
var result = make([][] int, n)
for i := 0; i < n; i++ {
result[i] = make([]int,n)
}
var brackets = make([][] int, n)
for i := 0; i < n; i++ {
brackets[i] = make([]int,n)
}
var cost int = 0
var j int = 0
for len := 1 ; len < n ; len++ {
for i := 0 ; i < n - len ; i++ {
j = i + len
result[i][j] = math.MaxInt64
for k := i ; k < j ; k++ {
cost = result[i][k] + result[k + 1][j] + dims[i] *
dims[k + 1] * dims[j + 1]
if cost < result[i][j] {
result[i][j] = cost
brackets[i][j] = k
}
}
}
}
this.name = 'A'
this.count = 0
// Show Brackets
this.showBrackets(0, n - 1, brackets)
fmt.Print("\n")
}
func main() {
var task * Multiplication = getMultiplication()
var dims1 = [] int {
10,
16,
12,
6,
14,
}
var dims2 = [] int {
8,
20,
16,
10,
6,
}
/*
dims = [10 , 16 , 12 , 6 , 14]
matri× A = 10 × 16
matri× B = 16 × 12
matri× C = 12 × 6
matri× D = 6 × 14
--------------------
(A(BC))D
(16×12×6) + (10×16×6) + (10×6×14)
= 2952
*/
var n int = len(dims1)
task.matrixChainMultiplication(dims1, n)
n = len(dims2)
/*
dims = [8 , 20 , 16 , 10 , 6]
matri× A = 8 × 20
matri× B = 20 × 16
matri× C = 16 × 10
matri× D = 10 × 6
A(B(CD)) = 3840
(16×10×6) + (20×16×6 ) + (8×20×6 ) = 3840
*/
task.matrixChainMultiplication(dims2, n)
}
Output
((A(AB))D)
(A(A(BD)))
<?php
// Php Program
// Printing brackets in matrix chain multiplication
class Multiplication
{
public $name;
public $count;
public function __construct()
{
$this->name = 'A';
$this->count = 0;
}
public function showBrackets($i, $j, $brackets)
{
if ($i == $j)
{
if ($this->count != 0)
{
echo(ord($this->name) + $this->count);
}
else
{
echo($this->name);
}
if ($this->name == 'Z')
{
// Useful when dimension size is exceed A..Z
$this->name = 'A';
$this->count++;
}
else
{
// Change name
$this->name++;
}
}
else
{
echo("(");
$this->showBrackets($i, $brackets[$i][$j], $brackets);
$this->showBrackets($brackets[$i][$j] + 1, $j, $brackets);
echo(")");
}
}
public function matrixChainMultiplication($dims, $size)
{
$n = $size - 1;
$result = array_fill(0, $n, array_fill(0, $n, 0));
$brackets = array_fill(0, $n, array_fill(0, $n, 0));
$cost = 0;
$j = 0;
for ($len = 1; $len < $n; $len++)
{
for ($i = 0; $i < $n - $len; $i++)
{
$j = $i + $len;
$result[$i][$j] = PHP_INT_MAX;
for ($k = $i; $k < $j; $k++)
{
$cost = $result[$i][$k] + $result[$k + 1][$j] + $dims[$i] *
$dims[$k + 1] * $dims[$j + 1];
if ($cost < $result[$i][$j])
{
$result[$i][$j] = $cost;
$brackets[$i][$j] = $k;
}
}
}
}
$this->name = 'A';
$this->count = 0;
// Show Brackets
$this->showBrackets(0, $n - 1, $brackets);
echo("\n");
}
}
function main()
{
$task = new Multiplication();
$dims1 = array(10, 16, 12, 6, 14);
$dims2 = array(8, 20, 16, 10, 6);
/*
dims = [10 , 16 , 12 , 6 , 14]
matri× A = 10 × 16
matri× B = 16 × 12
matri× C = 12 × 6
matri× D = 6 × 14
--------------------
(A(BC))D
(16×12×6) + (10×16×6) + (10×6×14)
= 2952
*/
$n = count($dims1);
$task->matrixChainMultiplication($dims1, $n);
$n = count($dims2);
/*
dims = [8 , 20 , 16 , 10 , 6]
matri× A = 8 × 20
matri× B = 20 × 16
matri× C = 16 × 10
matri× D = 10 × 6
A(B(CD)) = 3840
(16×10×6) + (20×16×6 ) + (8×20×6 ) = 3840
*/
$task->matrixChainMultiplication($dims2, $n);
}
main();
Output
((A(BC))D)
(A(B(CD)))
// Node JS Program
// Printing brackets in matrix chain multiplication
class Multiplication
{
constructor()
{
this.name = 'A';
this.count = 0;
}
showBrackets(i, j, brackets)
{
if (i == j)
{
if (this.count != 0)
{
process.stdout.write("" + this.name.charCodeAt(0) + this.count);
}
else
{
process.stdout.write(this.name);
}
if (this.name == 'Z')
{
// Useful when dimension size is exceed A..Z
this.name = 'A';
this.count++;
}
else
{
// Change name
this.name = String. fromCharCode(this.name.charCodeAt(0) +
1);
}
}
else
{
process.stdout.write("(");
this.showBrackets(i, brackets[i][j], brackets);
this.showBrackets(brackets[i][j] + 1, j, brackets);
process.stdout.write(")");
}
}
matrixChainMultiplication(dims, size)
{
var n = size - 1;
var result = Array(n).fill(0).map(() => new Array(n).fill(0));
var brackets = Array(n).fill(0).map(() => new Array(n).fill(0));
var cost = 0;
var j = 0;
for (var len = 1; len < n; len++)
{
for (var i = 0; i < n - len; i++)
{
j = i + len;
result[i][j] = Number.MAX_VALUE;
for (var k = i; k < j; k++)
{
cost = result[i][k] + result[k + 1][j] + dims[i] *
dims[k + 1] * dims[j + 1];
if (cost < result[i][j])
{
result[i][j] = cost;
brackets[i][j] = k;
}
}
}
}
this.name = 'A';
this.count = 0;
// Show Brackets
this.showBrackets(0, n - 1, brackets);
process.stdout.write("\n");
}
}
function main()
{
var task = new Multiplication();
var dims1 = [10, 16, 12, 6, 14];
var dims2 = [8, 20, 16, 10, 6];
/*
dims = [10 , 16 , 12 , 6 , 14]
matri× A = 10 × 16
matri× B = 16 × 12
matri× C = 12 × 6
matri× D = 6 × 14
--------------------
(A(BC))D
(16×12×6) + (10×16×6) + (10×6×14)
= 2952
*/
var n = dims1.length;
task.matrixChainMultiplication(dims1, n);
n = dims2.length;
/*
dims = [8 , 20 , 16 , 10 , 6]
matri× A = 8 × 20
matri× B = 20 × 16
matri× C = 16 × 10
matri× D = 10 × 6
A(B(CD)) = 3840
(16×10×6) + (20×16×6 ) + (8×20×6 ) = 3840
*/
task.matrixChainMultiplication(dims2, n);
}
main();
Output
((A(BC))D)
(A(B(CD)))
import sys
# Python 3 Program
# Printing brackets in matrix chain multiplication
class Multiplication :
def __init__(self) :
self.name = 'A'
self.count = 0
def showBrackets(self, i, j, brackets) :
if (i == j) :
if (self.count != 0) :
print(ord(self.name) + self.count, end = "")
else :
print(self.name, end = "")
if (self.name == 'Z') :
# Useful when dimension size is exceed A..Z
self.name = 'A'
self.count += 1
else :
# Change name
self.name = chr(ord(self.name) + 1)
else :
print("(", end = "")
self.showBrackets(i, brackets[i][j], brackets)
self.showBrackets(brackets[i][j] + 1, j, brackets)
print(")", end = "")
def matrixChainMultiplication(self, dims, size) :
n = size - 1
result = [[0] * (n) for _ in range(n) ]
brackets = [[0] * (n) for _ in range(n) ]
cost = 0
j = 0
len = 1
while (len < n) :
i = 0
while (i < n - len) :
j = i + len
result[i][j] = sys.maxsize
k = i
while (k < j) :
cost = result[i][k] + result[k + 1][j] + dims[i] * dims[k + 1] * dims[j + 1]
if (cost < result[i][j]) :
result[i][j] = cost
brackets[i][j] = k
k += 1
i += 1
len += 1
self.name = 'A'
self.count = 0
# Show Brackets
self.showBrackets(0, n - 1, brackets)
print(end = "\n")
def main() :
task = Multiplication()
dims1 = [10, 16, 12, 6, 14]
dims2 = [8, 20, 16, 10, 6]
# dims = [10 , 16 , 12 , 6 , 14]
# matri× A = 10 × 16
# matri× B = 16 × 12
# matri× C = 12 × 6
# matri× D = 6 × 14
# --------------------
# (A(BC))D
# (16×12×6) + (10×16×6) + (10×6×14)
# = 2952
n = len(dims1)
task.matrixChainMultiplication(dims1, n)
n = len(dims2)
# dims = [8 , 20 , 16 , 10 , 6]
# matri× A = 8 × 20
# matri× B = 20 × 16
# matri× C = 16 × 10
# matri× D = 10 × 6
# A(B(CD)) = 3840
# (16×10×6) + (20×16×6 ) + (8×20×6 ) = 3840
task.matrixChainMultiplication(dims2, n)
if __name__ == "__main__": main()
Output
((A(BC))D)
(A(B(CD)))
# Ruby Program
# Printing brackets in matrix chain multiplication
class Multiplication
# Define the accessor and reader of class Multiplication
attr_reader :name, :count
attr_accessor :name, :count
def initialize()
self.name = 'A'
self.count = 0
end
def showBrackets(i, j, brackets)
if (i == j)
if (self.count != 0)
print(self.name.ord + self.count)
else
print(self.name)
end
if (self.name == 'Z')
# Useful when dimension size is exceed A..Z
self.name = 'A'
self.count += 1
else
# Change name
self.name = (self.name.ord+1).chr
end
else
print("(")
self.showBrackets(i, brackets[i][j], brackets)
self.showBrackets(brackets[i][j] + 1, j, brackets)
print(")")
end
end
def matrixChainMultiplication(dims, size)
n = size - 1
result = Array.new(n) {Array.new(n) {0}}
brackets = Array.new(n) {Array.new(n) {0}}
cost = 0
j = 0
len = 1
while (len < n)
i = 0
while (i < n - len)
j = i + len
result[i][j] = (2 ** (0. size * 8 - 2))
k = i
while (k < j)
cost = result[i][k] + result[k + 1][j] + dims[i] *
dims[k + 1] * dims[j + 1]
if (cost < result[i][j])
result[i][j] = cost
brackets[i][j] = k
end
k += 1
end
i += 1
end
len += 1
end
self.name = 'A'
self.count = 0
# Show Brackets
self.showBrackets(0, n - 1, brackets)
print("\n")
end
end
def main()
task = Multiplication.new()
dims1 = [10, 16, 12, 6, 14]
dims2 = [8, 20, 16, 10, 6]
# dims = [10 , 16 , 12 , 6 , 14]
# matri× A = 10 × 16
# matri× B = 16 × 12
# matri× C = 12 × 6
# matri× D = 6 × 14
# --------------------
# (A(BC))D
# (16×12×6) + (10×16×6) + (10×6×14)
# = 2952
n = dims1.length
task.matrixChainMultiplication(dims1, n)
n = dims2.length
# dims = [8 , 20 , 16 , 10 , 6]
# matri× A = 8 × 20
# matri× B = 20 × 16
# matri× C = 16 × 10
# matri× D = 10 × 6
# A(B(CD)) = 3840
# (16×10×6) + (20×16×6 ) + (8×20×6 ) = 3840
task.matrixChainMultiplication(dims2, n)
end
main()
Output
((A(BC))D)
(A(B(CD)))
// Scala Program
// Printing brackets in matrix chain multiplication
class Multiplication(var name: Char,
var count: Int)
{
def this()
{
this('A', 0)
}
def showBrackets(i: Int, j: Int, brackets: Array[Array[Int]]): Unit = {
if (i == j)
{
if (count != 0)
{
print(name.toInt + count);
}
else
{
print(name);
}
if (name == 'Z')
{
// Useful when dimension size is exceed A..Z
name = 'A';
count += 1;
}
else
{
// Change name
name = (name.toInt + 1).toChar;
}
}
else
{
print("(");
showBrackets(i, brackets(i)(j), brackets);
showBrackets(brackets(i)(j) + 1, j, brackets);
print(")");
}
}
def matrixChainMultiplication(dims: Array[Int], size: Int): Unit = {
var n: Int = size - 1;
var result: Array[Array[Int]] = Array.fill[Int](n, n)(0);
var brackets: Array[Array[Int]] = Array.fill[Int](n, n)(0);
var cost: Int = 0;
var j: Int = 0;
var len: Int = 1;
while (len < n)
{
var i: Int = 0;
while (i < n - len)
{
j = i + len;
result(i)(j) = Int.MaxValue;
var k: Int = i;
while (k < j)
{
cost = result(i)(k) + result(k + 1)(j) + dims(i) *
dims(k + 1) * dims(j + 1);
if (cost < result(i)(j))
{
result(i)(j) = cost;
brackets(i)(j) = k;
}
k += 1;
}
i += 1;
}
len += 1;
}
this.name = 'A';
this.count = 0;
// Show Brackets
showBrackets(0, n - 1, brackets);
print("\n");
}
}
object Main
{
def main(args: Array[String]): Unit = {
var task: Multiplication = new Multiplication();
var dims1: Array[Int] = Array(10, 16, 12, 6, 14);
var dims2: Array[Int] = Array(8, 20, 16, 10, 6);
/*
dims = [10 , 16 , 12 , 6 , 14]
matri× A = 10 × 16
matri× B = 16 × 12
matri× C = 12 × 6
matri× D = 6 × 14
--------------------
(A(BC))D
(16×12×6) + (10×16×6) + (10×6×14)
= 2952
*/
var n: Int = dims1.length;
task.matrixChainMultiplication(dims1, n);
n = dims2.length;
/*
dims = [8 , 20 , 16 , 10 , 6]
matri× A = 8 × 20
matri× B = 20 × 16
matri× C = 16 × 10
matri× D = 10 × 6
A(B(CD)) = 3840
(16×10×6) + (20×16×6 ) + (8×20×6 ) = 3840
*/
task.matrixChainMultiplication(dims2, n);
}
}
Output
((A(BC))D)
(A(B(CD)))
import Foundation;
// Swift 4 Program
// Printing brackets in matrix chain multiplication
class Multiplication
{
var name: Character;
var count: Int;
init()
{
self.name = "A";
self.count = 0;
}
func showBrackets(_ i: Int, _ j: Int, _ brackets: [
[Int]
])
{
if (i == j)
{
if (self.count != 0)
{
print(Int(UnicodeScalar(String(self.name))!.value) + self.count, terminator: "");
}
else
{
print(self.name, terminator: "");
}
if (self.name == "Z")
{
// Useful when dimension size is exceed A..Z
self.name = "A";
self.count += 1 ;
}
else
{
// Change name
self.name = Character(UnicodeScalar(
Int(UnicodeScalar(String(self.name))!.value) + i)!)
}
}
else
{
print("(", terminator: "");
self.showBrackets(i, brackets[i][j], brackets);
self.showBrackets(brackets[i][j] + 1, j, brackets);
print(")", terminator: "");
}
}
func matrixChainMultiplication(_ dims: [Int], _ size: Int)
{
let n: Int = size - 1;
var result: [
[Int]
] = Array(repeating: Array(repeating: 0, count: n), count: n);
var brackets: [
[Int]
] = Array(repeating: Array(repeating: 0, count: n), count: n);
var cost: Int = 0;
var j: Int = 0;
var len: Int = 1;
while (len < n)
{
var i: Int = 0;
while (i < n - len)
{
j = i + len;
result[i][j] = Int.max;
var k: Int = i;
while (k < j)
{
cost = result[i][k] + result[k + 1][j] + dims[i] *
dims[k + 1] * dims[j + 1];
if (cost < result[i][j])
{
result[i][j] = cost;
brackets[i][j] = k;
}
k += 1;
}
i += 1;
}
len += 1;
}
self.name = "A";
self.count = 0;
// Show Brackets
self.showBrackets(0, n - 1, brackets);
print(terminator: "\n");
}
}
func main()
{
let task: Multiplication = Multiplication();
let dims1: [Int] = [10, 16, 12, 6, 14];
let dims2: [Int] = [8, 20, 16, 10, 6];
/*
dims = [10 , 16 , 12 , 6 , 14]
matri× A = 10 × 16
matri× B = 16 × 12
matri× C = 12 × 6
matri× D = 6 × 14
--------------------
(A(BC))D
(16×12×6) + (10×16×6) + (10×6×14)
= 2952
*/
var n: Int = dims1.count;
task.matrixChainMultiplication(dims1, n);
n = dims2.count;
/*
dims = [8 , 20 , 16 , 10 , 6]
matri× A = 8 × 20
matri× B = 20 × 16
matri× C = 16 × 10
matri× D = 10 × 6
A(B(CD)) = 3840
(16×10×6) + (20×16×6 ) + (8×20×6 ) = 3840
*/
task.matrixChainMultiplication(dims2, n);
}
main();
Output
((A(AB))D)
(A(A(BD)))
// Kotlin Program
// Printing brackets in matrix chain multiplication
class Multiplication
{
var name: Char;
var count: Int;
constructor()
{
this.name = 'A';
this.count = 0;
}
fun showBrackets(i: Int, j: Int,
brackets: Array < Array < Int >> ): Unit
{
if (i == j)
{
if (this.count != 0)
{
print(this.name.toInt() + this.count);
}
else
{
print(this.name);
}
if (this.name == 'Z')
{
// Useful when dimension size is exceed A..Z
this.name = 'A';
this.count += 1;
}
else
{
// Change name
this.name += 1;
}
}
else
{
print("(");
this.showBrackets(i, brackets[i][j], brackets);
this.showBrackets(brackets[i][j] + 1, j, brackets);
print(")");
}
}
fun matrixChainMultiplication(dims: Array < Int > , size: Int): Unit
{
var n: Int = size - 1;
val result: Array < Array < Int >> = Array(n)
{
Array(n)
{
0
}
};
val brackets: Array < Array < Int >> = Array(n)
{
Array(n)
{
0
}
};
var cost : Int;
var j : Int;
var len: Int = 1;
while (len < n)
{
var i: Int = 0;
while (i < n - len)
{
j = i + len;
result[i][j] = Int.MAX_VALUE;
var k: Int = i;
while (k < j)
{
cost = result[i][k] + result[k + 1][j] + dims[i] *
dims[k + 1] * dims[j + 1];
if (cost < result[i][j])
{
result[i][j] = cost;
brackets[i][j] = k;
}
k += 1;
}
i += 1;
}
len += 1;
}
this.name = 'A';
this.count = 0;
// Show Brackets
this.showBrackets(0, n - 1, brackets);
print("\n");
}
}
fun main(args: Array < String > ): Unit
{
val task: Multiplication = Multiplication();
val dims1: Array < Int > = arrayOf(10, 16, 12, 6, 14);
val dims2: Array < Int > = arrayOf(8, 20, 16, 10, 6);
/*
dims = [10 , 16 , 12 , 6 , 14]
matri× A = 10 × 16
matri× B = 16 × 12
matri× C = 12 × 6
matri× D = 6 × 14
--------------------
(A(BC))D
(16×12×6) + (10×16×6) + (10×6×14)
= 2952
*/
var n: Int = dims1.count();
task.matrixChainMultiplication(dims1, n);
n = dims2.count();
/*
dims = [8 , 20 , 16 , 10 , 6]
matri× A = 8 × 20
matri× B = 20 × 16
matri× C = 16 × 10
matri× D = 10 × 6
A(B(CD)) = 3840
(16×10×6) + (20×16×6 ) + (8×20×6 ) = 3840
*/
task.matrixChainMultiplication(dims2, n);
}
Output
((A(BC))D)
(A(B(CD)))
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment