Print all paths from root node to leaf
The problem is to print all paths from the root node to each leaf node in a binary tree. A path is a sequence of nodes starting from the root and ending at a leaf node, where each node is connected to its child nodes through edges.
Example
Consider the binary tree:
1
/ \
2 3
/ / \
4 5 6
\ / \
7 8 11
/ \
9 10
The paths from the root to each leaf node are:
- [1, 2, 4, 7]
- [1, 3, 5]
- [1, 3, 6, 8, 9]
- [1, 3, 6, 8, 10]
- [1, 3, 6, 11]
Idea to Solve the Problem
To print all paths from the root node to each leaf node, we can use a recursive approach. We will perform a depth-first search (DFS) on the binary tree, and during the traversal, we will maintain a stack to store the nodes in the current path. When we reach a leaf node, we will print the elements in the stack, which represent the path from the root to that leaf node.
Algorithm
- Create a custom stack structure to hold binary tree nodes and their next pointers.
- Define a function
insert(data)
to create new binary tree nodes and return their reference. - Define a function
push(tree_node, head)
to add a new element into the stack and return the updated stack top. - Define a function
pop(&top)
to remove the top element from the stack. - Define a function
print_path(temp)
to recursively print the path from the root to the leaf node. - Define a function
show_path(root, &head)
to collect path information using the stack and print the paths to leaf nodes.- If
root
is not NULL:- Push
root
into the stack. - Recursively call
show_path(root->left, &head)
. - Recursively call
show_path(root->right, &head)
. - If
root
is a leaf node (both left and right children are NULL), print the elements in the stack as the path. - Pop the top element from the stack.
- Push
- If
- In the
main
function, construct the binary tree and call theshow_path
function to print all paths.
Code Solution
/*
C Program
Print all paths from root node to leaf
*/
#include <stdio.h>
#include <stdlib.h>
//Structure of Binary Node
struct Node
{
int data;
struct Node *left, *right;
};
//Define the custom stack structure
struct MyStack
{
//First is element of Binary tree node
struct Node *element;
//Second are used to hold information of next node
struct MyStack *next;
};
//Create a binary tree nodes and node fields (data,pointer)
//And returning the reference of newly nodes
struct Node *insert(int data)
{
//create dynamic memory to new binary tree node
struct Node *new_node = (struct Node *) malloc(sizeof(struct Node));
if (new_node != NULL)
{
//set data and pointer values
new_node->data = data;
new_node->left = NULL; //Initially node left-child is NULL
new_node->right = NULL; //Initially node right-child is NULL
}
else
{
printf("Memory Overflow\n");
exit(0); //Terminate program execution
}
//return reference
return new_node;
}
//Create a new stack element and return this newly node
struct MyStack *push(struct Node *tree_node, struct MyStack *head)
{
//Create new node of Stack
struct MyStack *node = (struct MyStack *) malloc(sizeof(struct MyStack));
if (node != NULL)
{
//Set tree node
node->element = tree_node;
//Connect new node into head of Stack
node->next = head;
}
else
{
printf("Memory Overflow\n");
//Terminate program execution
exit(0);
}
return node;
}
//Remove a top element of stack
void pop(struct MyStack **top)
{
if ( *top != NULL)
{
struct MyStack *remove = *top;
//Visit to next top element
*top = remove->next;
//set remove node values
remove->element = NULL;
remove->next = NULL;
//free node memory
free(remove);
remove = NULL;
}
}
//Function which is display the path from root to leaf
void print_path(struct MyStack *temp)
{
if (temp != NULL)
{
print_path(temp->next);
printf("%3d", temp->element->data);
}
}
//This function are collect path information using stack and when get leaf node then displaying node value
void show_path(struct Node *root, struct MyStack **head)
{
if (root != NULL)
{
//Add a new element into Stack
*head = push(root, *head);
show_path(root->left, head);
show_path(root->right, head);
if (root->left == NULL && root->right == NULL)
{
//when get leaf node then display path
printf("\n[");
print_path( *head);
printf(" ]\n");
}
pop(head);
}
}
int main()
{
struct Node *root = NULL;
/*Make A Binary Tree
-----------------------
1
/ \
2 3
/ / \
4 5 6
\ / \
7 8 11
/ \
9 10
*/
//Insert node into Binary tree
root = insert(1);
root->left = insert(2);
root->right = insert(3);
root->right->right = insert(6);
root->right->left = insert(5);
root->left->left = insert(4);
root->left->left->right = insert(7);
root->right->right->left = insert(8);
root->right->right->left->left = insert(9);
root->right->right->left->right = insert(10);
root->right->right->right = insert(11);
struct MyStack *head = NULL;
//Display root to all leaf path
show_path(root, & head);
return 0;
}
Output
[ 1 2 4 7 ]
[ 1 3 5 ]
[ 1 3 6 8 9 ]
[ 1 3 6 8 10 ]
[ 1 3 6 11 ]
/*
Java Program
Print all paths from root node to leaf
*/
//Tree node
class Node
{
public int data;
public Node left;
public Node right;
//Set initial value of Binary Tree Node
public Node(int data)
{
this.data = data;
this.left = null;
this.right = null;
}
}
//Define the custom stack class
class MyStack
{
public Node element;
public MyStack next;
public MyStack(Node element)
{
this.element = element;
this.next = null;
}
}
class BinaryTree
{
public MyStack top;
public Node root;
public BinaryTree()
{
this.top = null;
this.root = null;
}
//add element into top of stack
public void push(Node element)
{
MyStack new_node = new MyStack(element);
if (new_node != null)
{
new_node.next = this.top;
this.top = new_node;
}
}
//Remove top element
public void pop()
{
if (this.top == null)
{
//already empty
return;
}
MyStack temp = this.top;
this.top = temp.next;
temp = null;
}
//Function which is display the path from root to leaf
public void print_path(MyStack temp)
{
if (temp != null)
{
print_path(temp.next);
System.out.print(" " + temp.element.data + " ");
}
}
//This function are collect path information using stack and when get leaf node then displaying node value
public void show_path(Node root)
{
if (root != null)
{
//Add a new element into Stack
this.push(root);
this.show_path(root.left);
this.show_path(root.right);
if (root.left == null && root.right == null)
{
System.out.print("\n[");
this.print_path(this.top);
System.out.print(" ]\n");
}
this.pop();
}
}
public static void main(String[] args)
{
BinaryTree obj = new BinaryTree();
/* Make A Binary Tree
-----------------------
1
/ \
2 3
/ / \
4 5 6
\ / \
7 8 11
/ \
9 10
*/
//Insert node into Binary tree
obj.root = new Node(1);
obj.root.left = new Node(2);
obj.root.right = new Node(3);
obj.root.right.right = new Node(6);
obj.root.right.left = new Node(5);
obj.root.left.left = new Node(4);
obj.root.left.left.right = new Node(7);
obj.root.right.right.left = new Node(8);
obj.root.right.right.left.left = new Node(9);
obj.root.right.right.left.right = new Node(10);
obj.root.right.right.right = new Node(11);
//Display root to all leaf path
obj.show_path(obj.root);
}
}
Output
[ 1 2 4 7 ]
[ 1 3 5 ]
[ 1 3 6 8 9 ]
[ 1 3 6 8 10 ]
[ 1 3 6 11 ]
/*
C++ Program
Print all paths from root node to leaf
*/
//Tree node
#include<iostream>
using namespace std;
class Node
{
public: int data;
Node * left;
Node * right;
//Set initial value of Binary Tree Node
Node(int data)
{
this->data = data;
this->left = NULL;
this->right = NULL;
}
};
//Define the custom stack class
class MyStack
{
public: Node * element;
MyStack * next;
MyStack(Node * element)
{
this->element = element;
this->next = NULL;
}
};
class BinaryTree
{
public: MyStack * top;
Node * root;
BinaryTree()
{
this->top = NULL;
this->root = NULL;
}
//add element into top of stack
void push(Node * element)
{
MyStack * new_node = new MyStack(element);
if (new_node != NULL)
{
new_node->next = this->top;
this->top = new_node;
}
}
//Remove top element
void pop()
{
if (this->top == NULL)
{
//already empty
return;
}
MyStack * temp = this->top;
this->top = temp->next;
temp = NULL;
}
//Function which is display the path from root to leaf
void print_path(MyStack * temp)
{
if (temp != NULL)
{
print_path(temp->next);
cout << " " << temp->element->data << " ";
}
}
//This function are collect path information using stack and when get leaf node then displaying node value
void show_path(Node * root)
{
if (root != NULL)
{
//Add a new element into Stack
this->push(root);
this->show_path(root->left);
this->show_path(root->right);
if (root->left == NULL && root->right == NULL)
{
cout << "\n[";
this->print_path(this->top);
cout << " ]\n";
}
this->pop();
}
}
};
int main()
{
BinaryTree obj = BinaryTree();
/* Make A Binary Tree
-----------------------
1
/ \
2 3
/ / \
4 5 6
\ / \
7 8 11
/ \
9 10
*/
//Insert node into Binary tree
obj.root = new Node(1);
obj.root->left = new Node(2);
obj.root->right = new Node(3);
obj.root->right->right = new Node(6);
obj.root->right->left = new Node(5);
obj.root->left->left = new Node(4);
obj.root->left->left->right = new Node(7);
obj.root->right->right->left = new Node(8);
obj.root->right->right->left->left = new Node(9);
obj.root->right->right->left->right = new Node(10);
obj.root->right->right->right = new Node(11);
//Display root to all leaf path
obj.show_path(obj.root);
return 0;
}
Output
[ 1 2 4 7 ]
[ 1 3 5 ]
[ 1 3 6 8 9 ]
[ 1 3 6 8 10 ]
[ 1 3 6 11 ]
/*
C# Program
Print all paths from root node to leaf
*/
//Tree node
using System;
class Node
{
public int data;
public Node left;
public Node right;
//Set initial value of Binary Tree Node
public Node(int data)
{
this.data = data;
this.left = null;
this.right = null;
}
}
//Define the custom stack class
class MyStack
{
public Node element;
public MyStack next;
public MyStack(Node element)
{
this.element = element;
this.next = null;
}
}
class BinaryTree
{
public MyStack top;
public Node root;
public BinaryTree()
{
this.top = null;
this.root = null;
}
//add element into top of stack
public void push(Node element)
{
MyStack new_node = new MyStack(element);
if (new_node != null)
{
new_node.next = this.top;
this.top = new_node;
}
}
//Remove top element
public void pop()
{
if (this.top == null)
{
return;
}
MyStack temp = this.top;
this.top = temp.next;
temp = null;
}
//Function which is display the path from root to leaf
public void print_path(MyStack temp)
{
if (temp != null)
{
print_path(temp.next);
Console.Write(" " + temp.element.data + " ");
}
}
//This function are collect path information using stack and when get leaf node then displaying node value
public void show_path(Node root)
{
if (root != null)
{
//Add a new element into Stack
this.push(root);
this.show_path(root.left);
this.show_path(root.right);
if (root.left == null && root.right == null)
{
Console.Write("\n[");
this.print_path(this.top);
Console.Write(" ]\n");
}
this.pop();
}
}
public static void Main(String[] args)
{
BinaryTree obj = new BinaryTree();
/* Make A Binary Tree
-----------------------
1
/ \
2 3
/ / \
4 5 6
\ / \
7 8 11
/ \
9 10
*/
//Insert node into Binary tree
//Insert node into Binary tree
obj.root = new Node(1);
obj.root.left = new Node(2);
obj.root.right = new Node(3);
obj.root.right.right = new Node(6);
obj.root.right.left = new Node(5);
obj.root.left.left = new Node(4);
obj.root.left.left.right = new Node(7);
obj.root.right.right.left = new Node(8);
obj.root.right.right.left.left = new Node(9);
obj.root.right.right.left.right = new Node(10);
obj.root.right.right.right = new Node(11);
//Display root to all leaf path
obj.show_path(obj.root);
}
}
Output
[ 1 2 4 7 ]
[ 1 3 5 ]
[ 1 3 6 8 9 ]
[ 1 3 6 8 10 ]
[ 1 3 6 11 ]
<?php
/*
Php Program
Print all paths from root node to leaf
*/
//Tree node
class Node
{
public $data;
public $left;
public $right;
//Set initial value of Binary Tree Node
function __construct($data)
{
$this->data = $data;
$this->left = null;
$this->right = null;
}
}
//Define the custom stack class
class MyStack
{
public $element;
public $next;
function __construct($element)
{
$this->element = $element;
$this->next = null;
}
}
class BinaryTree
{
public $top;
public $root;
function __construct()
{
$this->top = null;
$this->root = null;
}
//add element into top of stack
function push($element)
{
$new_node = new MyStack($element);
if ($new_node != null)
{
$new_node->next = $this->top;
$this->top = $new_node;
}
}
//Remove top element
function pop()
{
if ($this->top == null)
{
return;
}
$temp = $this->top;
$this->top = $temp->next;
$temp = null;
}
//Function which is display the path from root to leaf
function print_path($temp)
{
if ($temp != null)
{
$this->print_path($temp->next);
echo " ". $temp->element->data ." ";
}
}
//This function are collect path information using stack and when get leaf node then displaying node value
function show_path($root)
{
if ($root != null)
{
//Add a new element into Stack
$this->push($root);
$this->show_path($root->left);
$this->show_path($root->right);
if ($root->left == null && $root->right == null)
{
echo "\n[";
$this->print_path($this->top);
echo " ]\n";
}
$this->pop();
}
}
}
function main()
{
$obj = new BinaryTree();
/* Make A Binary Tree
-----------------------
1
/ \
2 3
/ / \
4 5 6
\ / \
7 8 11
/ \
9 10
*/
//Insert node into Binary tree
//Insert node into Binary tree
$obj->root = new Node(1);
$obj->root->left = new Node(2);
$obj->root->right = new Node(3);
$obj->root->right->right = new Node(6);
$obj->root->right->left = new Node(5);
$obj->root->left->left = new Node(4);
$obj->root->left->left->right = new Node(7);
$obj->root->right->right->left = new Node(8);
$obj->root->right->right->left->left = new Node(9);
$obj->root->right->right->left->right = new Node(10);
$obj->root->right->right->right = new Node(11);
//Display root to all leaf path
$obj->show_path($obj->root);
}
main();
Output
[ 1 2 4 7 ]
[ 1 3 5 ]
[ 1 3 6 8 9 ]
[ 1 3 6 8 10 ]
[ 1 3 6 11 ]
/*
Node Js Program
Print all paths from root node to leaf
*/
//Tree node
class Node
{
//Set initial value of Binary Tree Node
constructor(data)
{
this.data = data;
this.left = null;
this.right = null;
}
}
//Define the custom stack class
class MyStack
{
constructor(element)
{
this.element = element;
this.next = null;
}
}
class BinaryTree
{
constructor()
{
this.top = null;
this.root = null;
}
//add element into top of stack
push(element)
{
var new_node = new MyStack(element);
if (new_node != null)
{
new_node.next = this.top;
this.top = new_node;
}
}
//Remove top element
pop()
{
if (this.top == null)
{
return;
}
var temp = this.top;
this.top = temp.next;
temp = null;
}
//Function which is display the path from root to leaf
print_path(temp)
{
if (temp != null)
{
this.print_path(temp.next);
process.stdout.write(" " + temp.element.data + " ");
}
}
//This function are collect path information using stack and when get leaf node then displaying node value
show_path(root)
{
if (root != null)
{
//Add a new element into Stack
this.push(root);
this.show_path(root.left);
this.show_path(root.right);
if (root.left == null && root.right == null)
{
process.stdout.write("\n[");
this.print_path(this.top);
process.stdout.write(" ]\n");
}
this.pop();
}
}
}
function main()
{
var obj = new BinaryTree();
/* Make A Binary Tree
-----------------------
1
/ \
2 3
/ / \
4 5 6
\ / \
7 8 11
/ \
9 10
*/
//Insert node into Binary tree
//Insert node into Binary tree
obj.root = new Node(1);
obj.root.left = new Node(2);
obj.root.right = new Node(3);
obj.root.right.right = new Node(6);
obj.root.right.left = new Node(5);
obj.root.left.left = new Node(4);
obj.root.left.left.right = new Node(7);
obj.root.right.right.left = new Node(8);
obj.root.right.right.left.left = new Node(9);
obj.root.right.right.left.right = new Node(10);
obj.root.right.right.right = new Node(11);
//Display root to all leaf path
obj.show_path(obj.root);
}
main();
Output
[ 1 2 4 7 ]
[ 1 3 5 ]
[ 1 3 6 8 9 ]
[ 1 3 6 8 10 ]
[ 1 3 6 11 ]
# Python 3 Program
# Print all paths from root node to leaf
# Tree node
class Node :
# Set initial value of Binary Tree Node
def __init__(self, data) :
self.data = data
self.left = None
self.right = None
# Define the custom stack class
class MyStack :
def __init__(self, element) :
self.element = element
self.next = None
class BinaryTree :
def __init__(self) :
self.top = None
self.root = None
# add element into top of stack
def push(self, element) :
new_node = MyStack(element)
if (new_node != None) :
new_node.next = self.top
self.top = new_node
# Remove top element
def pop(self) :
if (self.top == None) :
# already empty
return
temp = self.top
self.top = temp.next
temp = None
# Function which is display the path from root to leaf
def print_path(self, temp) :
if (temp != None) :
self.print_path(temp.next)
print(" ", temp.element.data ," ", end = "")
# This function are collect path information using stack and when get leaf node then displaying node value
def show_path(self, root) :
if (root != None) :
# Add a new element into Stack
self.push(root)
self.show_path(root.left)
self.show_path(root.right)
if (root.left == None and root.right == None) :
print("\n[", end = "")
self.print_path(self.top)
print(" ]\n", end = "")
self.pop()
def main() :
obj = BinaryTree()
# Make A Binary Tree
# -----------------------
# 1
# / \
# 2 3
# / / \
# 4 5 6
# \ / \
# 7 8 11
# / \
# 9 10
#
# Insert node into Binary tree
obj.root = Node(1)
obj.root.left = Node(2)
obj.root.right = Node(3)
obj.root.right.right = Node(6)
obj.root.right.left = Node(5)
obj.root.left.left = Node(4)
obj.root.left.left.right = Node(7)
obj.root.right.right.left = Node(8)
obj.root.right.right.left.left = Node(9)
obj.root.right.right.left.right = Node(10)
obj.root.right.right.right = Node(11)
# Display root to all leaf path
obj.show_path(obj.root)
if __name__ == "__main__": main()
Output
[ 1 2 4 7 ]
[ 1 3 5 ]
[ 1 3 6 8 9 ]
[ 1 3 6 8 10 ]
[ 1 3 6 11 ]
# Ruby Program
# Print all paths from root node to leaf
# Tree node
class Node
# Define the accessor and reader of class Node
attr_reader :data, :left, :right
attr_accessor :data, :left, :right
# Set initial value of Binary Tree Node
def initialize(data)
self.data = data
self.left = nil
self.right = nil
end
end
# Define the custom stack class
class MyStack
# Define the accessor and reader of class MyStack
attr_reader :element, :next
attr_accessor :element, :next
def initialize(element)
self.element = element
self.next = nil
end
end
class BinaryTree
# Define the accessor and reader of class BinaryTree
attr_reader :top, :root
attr_accessor :top, :root
def initialize()
self.top = nil
self.root = nil
end
# add element into top of stack
def push(element)
new_node = MyStack.new(element)
if (new_node != nil)
new_node.next = self.top
self.top = new_node
end
end
# Remove top element
def pop()
if (self.top == nil)
# already empty
return
end
temp = self.top
self.top = temp.next
temp = nil
end
# Function which is display the path from root to leaf
def print_path(temp)
if (temp != nil)
self.print_path(temp.next)
print(" ", temp.element.data ," ")
end
end
# This function are collect path information using stack and when get leaf node then displaying node value
def show_path(root)
if (root != nil)
# Add a new element into Stack
self.push(root)
self.show_path(root.left)
self.show_path(root.right)
if (root.left == nil && root.right == nil)
print("\n[")
self.print_path(self.top)
print(" ]\n")
end
self.pop()
end
end
end
def main()
obj = BinaryTree.new()
# Make A Binary Tree
# -----------------------
# 1
# / \
# 2 3
# / / \
# 4 5 6
# \ / \
# 7 8 11
# / \
# 9 10
#
# Insert node into Binary tree
obj.root = Node.new(1)
obj.root.left = Node.new(2)
obj.root.right = Node.new(3)
obj.root.right.right = Node.new(6)
obj.root.right.left = Node.new(5)
obj.root.left.left = Node.new(4)
obj.root.left.left.right = Node.new(7)
obj.root.right.right.left = Node.new(8)
obj.root.right.right.left.left = Node.new(9)
obj.root.right.right.left.right = Node.new(10)
obj.root.right.right.right = Node.new(11)
# Display root to all leaf path
obj.show_path(obj.root)
end
main()
Output
[ 1 2 4 7 ]
[ 1 3 5 ]
[ 1 3 6 8 9 ]
[ 1 3 6 8 10 ]
[ 1 3 6 11 ]
/*
Scala Program
Print all paths from root node to leaf
*/
//Tree node
class Node(var data: Int,
var left: Node,
var right: Node)
{
//Set initial value of Binary Tree Node
def this(data: Int)
{
this(data,null,null);
}
}
//Define the custom stack class
class MyStack(var element: Node,
var next: MyStack)
{
def this(element: Node)
{
this(element,null);
}
}
class BinaryTree(var top: MyStack,
var root: Node)
{
def this()
{
this(null,null);
}
//add element into top of stack
def push(element: Node): Unit = {
var new_node: MyStack = new MyStack(element);
if (new_node != null)
{
new_node.next = this.top;
this.top = new_node;
}
}
//Remove top element
def pop(): Unit = {
if (this.top == null)
{
return;
}
var temp: MyStack = this.top;
this.top = temp.next;
temp = null;
}
//Function which is display the path from root to leaf
def print_path(temp: MyStack): Unit = {
if (temp != null)
{
print_path(temp.next);
print(" " + temp.element.data + " ");
}
}
//This function are collect path information using stack and when get leaf node then displaying node value
def show_path(root: Node): Unit = {
if (root != null)
{
//Add a new element into Stack
this.push(root);
this.show_path(root.left);
this.show_path(root.right);
if (root.left == null && root.right == null)
{
print("\n[");
this.print_path(this.top);
print(" ]\n");
}
this.pop();
}
}
}
object Main
{
def main(args: Array[String]): Unit = {
var obj: BinaryTree = new BinaryTree();
/* Make A Binary Tree
-----------------------
1
/ \
2 3
/ / \
4 5 6
\ / \
7 8 11
/ \
9 10
*/
//Insert node into Binary tree
//Insert node into Binary tree
obj.root = new Node(1);
obj.root.left = new Node(2);
obj.root.right = new Node(3);
obj.root.right.right = new Node(6);
obj.root.right.left = new Node(5);
obj.root.left.left = new Node(4);
obj.root.left.left.right = new Node(7);
obj.root.right.right.left = new Node(8);
obj.root.right.right.left.left = new Node(9);
obj.root.right.right.left.right = new Node(10);
obj.root.right.right.right = new Node(11);
//Display root to all leaf path
obj.show_path(obj.root);
}
}
Output
[ 1 2 4 7 ]
[ 1 3 5 ]
[ 1 3 6 8 9 ]
[ 1 3 6 8 10 ]
[ 1 3 6 11 ]
/*
Swift Program
Print all paths from root node to leaf
*/
//Tree node
class Node
{
var data: Int;
var left: Node? ;
var right: Node? ;
//Set initial value of Binary Tree Node
init(_ data: Int)
{
self.data = data;
self.left = nil;
self.right = nil;
}
}
//Define the custom stack class
class MyStack
{
var element: Node? ;
var next: MyStack? ;
init(_ element: Node? )
{
self.element = element;
self.next = nil;
}
}
class BinaryTree
{
var top: MyStack? ;
var root: Node? ;
init()
{
self.top = nil;
self.root = nil;
}
//add element into top of stack
func push(_ element: Node? )
{
let new_node: MyStack? = MyStack(element);
if (new_node != nil)
{
new_node!.next = self.top;
self.top = new_node;
}
}
//Remove top element
func pop()
{
if (self.top == nil)
{
//already empty
return;
}
var temp: MyStack? = self.top;
self.top = temp!.next;
temp = nil;
}
//Function which is display the path from root to leaf
func print_path(_ temp: MyStack? )
{
if (temp != nil)
{
self.print_path(temp!.next);
print(" ", temp!.element!.data ," ", terminator: "");
}
}
//This function are collect path information using stack and when get leaf node then displaying node value
func show_path(_ root: Node? )
{
if (root != nil)
{
//Add a new element into Stack
self.push(root);
self.show_path(root!.left);
self.show_path(root!.right);
if (root!.left == nil && root!.right == nil)
{
print("\n[", terminator: "");
self.print_path(self.top);
print(" ]\n", terminator: "");
}
self.pop();
}
}
}
func main()
{
let obj: BinaryTree = BinaryTree();
/* Make A Binary Tree
-----------------------
1
/ \
2 3
/ / \
4 5 6
\ / \
7 8 11
/ \
9 10
*/
//Insert node into Binary tree
obj.root = Node(1);
obj.root!.left = Node(2);
obj.root!.right = Node(3);
obj.root!.right!.right = Node(6);
obj.root!.right!.left = Node(5);
obj.root!.left!.left = Node(4);
obj.root!.left!.left!.right = Node(7);
obj.root!.right!.right!.left = Node(8);
obj.root!.right!.right!.left!.left = Node(9);
obj.root!.right!.right!.left!.right = Node(10);
obj.root!.right!.right!.right = Node(11);
//Display root to all leaf path
obj.show_path(obj.root);
}
main();
Output
[ 1 2 4 7 ]
[ 1 3 5 ]
[ 1 3 6 8 9 ]
[ 1 3 6 8 10 ]
[ 1 3 6 11 ]
Time Complexity Analysis
The time complexity of theshow_path
function is O(n), where n is the number of nodes in the binary
tree. Each node is visited once during the depth-first search traversal.
Output Explanation
The output shows all the paths from the root node to each leaf node. For the example tree provided in the code, the output displays the paths as follows:
[ 1 2 4 7 ]
[ 1 3 5 ]
[ 1 3 6 8 9 ]
[ 1 3 6 8 10 ]
[ 1 3 6 11 ]
Each line represents a path from the root node to a leaf node in the binary tree. The numbers within square brackets represent the nodes along the path.
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment