Posted on by Kalkicode
Code Queue

# Print all nodes between the given two levels of a binary tree

In this problem, we are given a binary tree, and we are required to print all the nodes that lie between two given levels, inclusive of those levels. The binary tree is a data structure where each node can have at most two children, referred to as the left child and the right child.

## Example

Consider the following binary tree:

``````
10
/   \
2     3
/     / \
4     9   5
/  \    \    \
7    3    6   20
/  \     /
2    8   -3
\
9
``````

Nodes between levels 2 and 4 (inclusive) are: 2, 3, 4, 9, 5, 7, 3, 6, 20

Nodes between levels 4 and 6 (inclusive) are: 7, 3, 6, 20, 2, 8, -3, 9

Nodes between levels 1 and 3 (inclusive) are: 10, 2, 3, 4, 9, 5

Nodes between levels 7 and 8 (inclusive) are: None (as there are no nodes in these levels)

## Idea to Solve the Problem

To print the nodes between two given levels, we can perform a level order traversal of the binary tree using a custom queue data structure. For each level, we check if it falls between the given levels (inclusive) and print the nodes accordingly.

## Code Solution

``````// C program
// Print all nodes between the given two levels of a binary tree
#include <stdio.h>

#include <stdlib.h>

//Node of binary tree
struct Node
{
int data;
struct Node *left, *right;
};
struct MyQueue
{
int level;
struct Node *element;
struct MyQueue *next;
};
//Create a binary tree nodes and node fields (data,pointer)
//And returning the reference of newly nodes
struct Node *insert(int data)
{
//create dynamic memory to new binary tree node
struct Node *new_node = (struct Node *) malloc(sizeof(struct Node));
if (new_node != NULL)
{
//Set node value
new_node->data = data;
new_node->left = NULL;
new_node->right = NULL;
}
else
{
printf("Memory Overflow\n");
}
//return reference
return new_node;
}
//Create a queue node and returns this node
struct MyQueue *enqueue(struct Node *tree_node)
{
//Make a new Queue node
struct MyQueue *new_node = (struct MyQueue *) malloc(sizeof(struct MyQueue));
if (new_node != NULL)
{
//Set node values
new_node->element = tree_node;
new_node->next = NULL;
}
else
{
printf("Memory Overflow\n");
}
return new_node;
}
//Remove a queue elements
void dequeue(struct MyQueue **front)
{
if ( *front != NULL)
{
struct MyQueue *remove = *front;
//Visit to next node
*front = remove->next;
remove->element = NULL;
remove->next = NULL;
//free node
free(remove);
remove = NULL;
}
}
//This are printing all binary tree nodes, between given (A to B) levels
void print_level_nodes(struct Node *root, int a, int b)
{
if (a <= 0 || b <= 0)
{
//invalid level
return;
}
if (a > b)
{
//When level sequence in not valid
//Then change its sequence
print_level_nodes(root, b, a);
}
else
{
if (root != NULL)
{
//make a queue pointers
struct MyQueue *front = NULL, *tail = NULL;
//Get first node of tree
front = enqueue(root);
//Start level of first node is one
front->level = 1;
//Set tail node to first node
tail = front;
printf("\n Node between level (%d-%d) is \n", a, b);
// Define a tree variable
struct Node *node = NULL;
// Result indicator
int status = 0;
// Traversal tree elements in level order
while (front != NULL)
{
// Tree node
node = front->element;
if (node->left != NULL)
{
// Add new left child node
tail->next = enqueue(node->left);
tail->next->level = front->level + 1;
tail = tail->next;
}
if (node->right != NULL)
{
// Add new right child node
tail->next = enqueue(node->right);
tail->next->level = front->level + 1;
tail = tail->next;
}
if (front->level >= a && front->level <= b)
{
printf(" %d", node->data);
status = 1;
}
dequeue( &front);
}
tail = NULL;
if (status == 0)
{
printf(" None");
}
}
else
{
printf("\nEmpty Tree\n");
}
}
}
int main()
{
struct Node *root = NULL;
/*
Construct Binary Tree
-----------------------
10
/   \
2     3
/     / \
4     9   5
/  \    \    \
7    3    6   20
/  \     /
2    8   -3
\
9
-----------------------
*/
root = insert(10);
root->left = insert(2);
root->right = insert(3);
root->right->right = insert(5);
root->right->left = insert(9);
root->left->left = insert(4);
root->left->left->left = insert(7);
root->left->left->right = insert(3);
root->right->left->right = insert(6);
root->right->right->right = insert(20);
root->right->right->right->left = insert(-3);
root->left->left->right->left = insert(2);
root->left->left->right->right = insert(8);
root->left->left->right->right->right = insert(9);
print_level_nodes(root, 2, 4);
print_level_nodes(root, 4, 6);
print_level_nodes(root, 1, 3);
print_level_nodes(root, 7, 8);
return 0;
}``````

#### Output

`````` Node between level (2-4) is
2 3 4 9 5 7 3 6 20
Node between level (4-6) is
7 3 6 20 2 8 -3 9
Node between level (1-3) is
10 2 3 4 9 5
Node between level (7-8) is
None``````
``````/*
Java program
Print all palindromic levels of a binary tree
*/
//Binary Tree node
class TreeNode
{
public int data;
public TreeNode left;
public TreeNode right;
public TreeNode(int data)
{
//set node value
this.data = data;
this.left = null;
this.right = null;
}
}
// Queue Node
class QueueNode
{
public TreeNode element;
public QueueNode next;
public int level;
public QueueNode(TreeNode element, int level)
{
this.element = element;
this.next = null;
this.level = level;
}
}
//Define custom queue class
class MyQueue
{
public QueueNode front;
public QueueNode tail;
public MyQueue()
{
this.front = null;
this.tail = null;
}
//Add a new node at last of queue
public void enqueue(TreeNode element, int level)
{
QueueNode new_node = new QueueNode(element, level);
if (this.front == null)
{
//When first node of queue
this.front = new_node;
}
else
{
this.tail.next = new_node;
}
this.tail = new_node;
}
//Delete first node of queue
public void dequeue()
{
if (this.front != null)
{
if (this.tail == this.front)
{
this.tail = null;
this.front = null;
}
else
{
this.front = this.front.next;
}
}
}
public boolean is_empty()
{
if (this.front == null)
{
return true;
}
else
{
return false;
}
}
}
class BinaryTree
{
public TreeNode root;
public BinaryTree()
{
// Set initial tree root to null
this.root = null;
}
// This are printing all binary tree nodes, between given (A to B) levels
public void print_level_nodes(int a, int b)
{
if (this.root == null)
{
System.out.print("\n Empty Binary Tree \n");
}
else
{
//Get top node in tree
TreeNode node = this.root;
int level = 1;
//Create a Queue
MyQueue queue = new MyQueue();
//Add first node at the level of one
queue.enqueue(node, level);
System.out.print("\n Node between level (" + a + "-" + b + ") is \n");
// Result indicator
boolean status = false;
//Execute loop until the queue is not empty
while (queue.is_empty() == false)
{
node = queue.front.element;
level = queue.front.level;
if (node.left != null)
{
queue.enqueue(node.left, level + 1);
}
if (node.right != null)
{
queue.enqueue(node.right, level + 1);
}
if (level >= a && level <= b)
{
status = true;
System.out.print("  " + node.data);
}
//remove element into queue
queue.dequeue();
}
if(status==false)
{
System.out.print(" None\n");
}
}
}
public static void main(String[] args)
{
//Object of Binary Tree
BinaryTree tree = new BinaryTree();
/*
Construct Binary Tree
-----------------------
10
/   \
2     3
/     / \
4     9   5
/  \    \    \
7    3    6   20
/  \     /
2    8   -3
\
9
-----------------------
*/
tree.root = new TreeNode(10);
tree.root.left = new TreeNode(2);
tree.root.right = new TreeNode(3);
tree.root.right.right = new TreeNode(5);
tree.root.right.left = new TreeNode(9);
tree.root.left.left = new TreeNode(4);
tree.root.left.left.left = new TreeNode(7);
tree.root.left.left.right = new TreeNode(3);
tree.root.right.left.right = new TreeNode(6);
tree.root.right.right.right = new TreeNode(20);
tree.root.right.right.right.left = new TreeNode(-3);
tree.root.left.left.right.left = new TreeNode(2);
tree.root.left.left.right.right = new TreeNode(8);
tree.root.left.left.right.right.right = new TreeNode(9);
tree.print_level_nodes(2, 4);
tree.print_level_nodes(4, 6);
tree.print_level_nodes(1, 3);
tree.print_level_nodes(7, 8);
}
}``````

#### Output

`````` Node between level (2-4) is
2  3  4  9  5  7  3  6  20
Node between level (4-6) is
7  3  6  20  2  8  -3  9
Node between level (1-3) is
10  2  3  4  9  5
Node between level (7-8) is
None``````
``````//Include header file
#include <iostream>
using namespace std;

/*
C++ program
Print all palindromic levels of a binary tree
*/

//Binary Tree node
class TreeNode
{
public: int data;
TreeNode *left;
TreeNode *right;
TreeNode(int data)
{
//set node value
this->data = data;
this->left = NULL;
this->right = NULL;
}
};
// Queue Node
class QueueNode
{
public: TreeNode *element;
QueueNode *next;
int level;
QueueNode(TreeNode *element, int level)
{
this->element = element;
this->next = NULL;
this->level = level;
}
};
//Define custom queue class
class MyQueue
{
public: QueueNode *front;
QueueNode *tail;
MyQueue()
{
this->front = NULL;
this->tail = NULL;
}
//Add a new node at last of queue
void enqueue(TreeNode *element, int level)
{
QueueNode *new_node = new QueueNode(element, level);
if (this->front == NULL)
{
//When first node of queue
this->front = new_node;
}
else
{
this->tail->next = new_node;
}
this->tail = new_node;
}
//Delete first node of queue
void dequeue()
{
if (this->front != NULL)
{
if (this->tail == this->front)
{
this->tail = NULL;
this->front = NULL;
}
else
{
this->front = this->front->next;
}
}
}
bool is_empty()
{
if (this->front == NULL)
{
return true;
}
else
{
return false;
}
}
};
class BinaryTree
{
public: TreeNode *root;
BinaryTree()
{
// Set initial tree root to null
this->root = NULL;
}
// This are printing all binary tree nodes, between given (A to B) levels
void print_level_nodes(int a, int b)
{
if (this->root == NULL)
{
cout << "\n Empty Binary Tree \n";
}
else
{
//Get top node in tree
TreeNode *node = this->root;
int level = 1;
//Create a Queue
MyQueue queue = MyQueue();
//Add first node at the level of one
queue.enqueue(node, level);
cout << "\n Node between level (" << a << "-" << b << ") is \n";
// Result indicator
bool status = false;
//Execute loop until the queue is not empty
while (queue.is_empty() == false)
{
node  = queue.front->element;
level = queue.front->level;
if (node->left != NULL)
{
queue.enqueue(node->left, level + 1);
}
if (node->right != NULL)
{
queue.enqueue(node->right, level + 1);
}
if (level >= a && level <= b)
{
status = true;
cout << "  " << node->data;
}
//remove element into queue
queue.dequeue();
}
if (status == false)
{
cout << " None\n";
}
}
}
};
int main()
{
//Object of Binary Tree
BinaryTree tree = BinaryTree();
tree.root = new TreeNode(10);
tree.root->left = new TreeNode(2);
tree.root->right = new TreeNode(3);
tree.root->right->right = new TreeNode(5);
tree.root->right->left = new TreeNode(9);
tree.root->left->left = new TreeNode(4);
tree.root->left->left->left = new TreeNode(7);
tree.root->left->left->right = new TreeNode(3);
tree.root->right->left->right = new TreeNode(6);
tree.root->right->right->right = new TreeNode(20);
tree.root->right->right->right->left = new TreeNode(-3);
tree.root->left->left->right->left = new TreeNode(2);
tree.root->left->left->right->right = new TreeNode(8);
tree.root->left->left->right->right->right = new TreeNode(9);
tree.print_level_nodes(2, 4);
tree.print_level_nodes(4, 6);
tree.print_level_nodes(1, 3);
tree.print_level_nodes(7, 8);
return 0;
}``````

#### Output

`````` Node between level (2-4) is
2  3  4  9  5  7  3  6  20
Node between level (4-6) is
7  3  6  20  2  8  -3  9
Node between level (1-3) is
10  2  3  4  9  5
Node between level (7-8) is
None``````
``````//Include namespace system
using System;

/*
C# program
Print all palindromic levels of a binary tree
*/

//Binary Tree node
class TreeNode
{
public int data;
public TreeNode left;
public TreeNode right;
public TreeNode(int data)
{
//set node value
this.data = data;
this.left = null;
this.right = null;
}
}
// Queue Node
class QueueNode
{
public TreeNode element;
public QueueNode next;
public int level;
public QueueNode(TreeNode element, int level)
{
this.element = element;
this.next = null;
this.level = level;
}
}
//Define custom queue class
class MyQueue
{
public QueueNode front;
public QueueNode tail;
public MyQueue()
{
this.front = null;
this.tail = null;
}
//Add a new node at last of queue
public void enqueue(TreeNode element, int level)
{
QueueNode new_node = new QueueNode(element, level);
if (this.front == null)
{
//When first node of queue
this.front = new_node;
}
else
{
this.tail.next = new_node;
}
this.tail = new_node;
}
//Delete first node of queue
public void dequeue()
{
if (this.front != null)
{
if (this.tail == this.front)
{
this.tail = null;
this.front = null;
}
else
{
this.front = this.front.next;
}
}
}
public Boolean is_empty()
{
if (this.front == null)
{
return true;
}
else
{
return false;
}
}
}
class BinaryTree
{
public TreeNode root;
public BinaryTree()
{
// Set initial tree root to null
this.root = null;
}
// This are printing all binary tree nodes, between given (A to B) levels
public void print_level_nodes(int a, int b)
{
if (this.root == null)
{
Console.Write("\n Empty Binary Tree \n");
}
else
{
//Get top node in tree
TreeNode node = this.root;
int level = 1;
//Create a Queue
MyQueue queue = new MyQueue();
//Add first node at the level of one
queue.enqueue(node, level);
Console.Write("\n Node between level (" + a + "-" + b + ") is \n");
// Result indicator
Boolean status = false;
//Execute loop until the queue is not empty
while (queue.is_empty() == false)
{
node = queue.front.element;
level = queue.front.level;
if (node.left != null)
{
queue.enqueue(node.left, level + 1);
}
if (node.right != null)
{
queue.enqueue(node.right, level + 1);
}
if (level >= a && level <= b)
{
status = true;
Console.Write("  " + node.data);
}
//remove element into queue
queue.dequeue();
}
if (status == false)
{
Console.Write(" None\n");
}
}
}
public static void Main(String[] args)
{
//Object of Binary Tree
BinaryTree tree = new BinaryTree();
tree.root = new TreeNode(10);
tree.root.left = new TreeNode(2);
tree.root.right = new TreeNode(3);
tree.root.right.right = new TreeNode(5);
tree.root.right.left = new TreeNode(9);
tree.root.left.left = new TreeNode(4);
tree.root.left.left.left = new TreeNode(7);
tree.root.left.left.right = new TreeNode(3);
tree.root.right.left.right = new TreeNode(6);
tree.root.right.right.right = new TreeNode(20);
tree.root.right.right.right.left = new TreeNode(-3);
tree.root.left.left.right.left = new TreeNode(2);
tree.root.left.left.right.right = new TreeNode(8);
tree.root.left.left.right.right.right = new TreeNode(9);
tree.print_level_nodes(2, 4);
tree.print_level_nodes(4, 6);
tree.print_level_nodes(1, 3);
tree.print_level_nodes(7, 8);
}
}``````

#### Output

`````` Node between level (2-4) is
2  3  4  9  5  7  3  6  20
Node between level (4-6) is
7  3  6  20  2  8  -3  9
Node between level (1-3) is
10  2  3  4  9  5
Node between level (7-8) is
None``````
``````<?php
/*
Php program
Print all palindromic levels of a binary tree
*/

//Binary Tree node
class TreeNode
{
public \$data;
public \$left;
public \$right;

function __construct(\$data)
{
//set node value
\$this->data = \$data;
\$this->left = null;
\$this->right = null;
}
}
// Queue Node
class QueueNode
{
public \$element;
public \$next;
public \$level;

function __construct(\$element, \$level)
{
\$this->element = \$element;
\$this->next = null;
\$this->level = \$level;
}
}
//Define custom queue class
class MyQueue
{
public \$front;
public \$tail;

function __construct()
{
\$this->front = null;
\$this->tail = null;
}
//Add a new node at last of queue
public	function enqueue(\$element, \$level)
{
\$new_node = new QueueNode(\$element, \$level);
if (\$this->front == null)
{
//When first node of queue
\$this->front = \$new_node;
}
else
{
\$this->tail->next = \$new_node;
}
\$this->tail = \$new_node;
}
//Delete first node of queue
public	function dequeue()
{
if (\$this->front != null)
{
if (\$this->tail == \$this->front)
{
\$this->tail = null;
\$this->front = null;
}
else
{
\$this->front = \$this->front->next;
}
}
}
public	function is_empty()
{
if (\$this->front == null)
{
return true;
}
else
{
return false;
}
}
}
class BinaryTree
{
public \$root;

function __construct()
{
// Set initial tree root to null
\$this->root = null;
}
// This are printing all binary tree nodes, between given (A to B) levels
public	function print_level_nodes(\$a, \$b)
{
if (\$this->root == null)
{
echo "\n Empty Binary Tree \n";
}
else
{
//Get top node in tree
\$node = \$this->root;
\$level = 1;
//Create a Queue
\$queue = new MyQueue();
//Add first node at the level of one
\$queue->enqueue(\$node, \$level);
echo "\n Node between level (". \$a ."-". \$b .") is \n";
// Result indicator
\$status = false;
//Execute loop until the queue is not empty
while (\$queue->is_empty() == false)
{
\$node = \$queue->front->element;
\$level = \$queue->front->level;
if (\$node->left != null)
{
\$queue->enqueue(\$node->left, \$level + 1);
}
if (\$node->right != null)
{
\$queue->enqueue(\$node->right, \$level + 1);
}
if (\$level >= \$a && \$level <= \$b)
{
\$status = true;
echo "  ". \$node->data;
}
//remove element into queue
\$queue->dequeue();
}
if (\$status == false)
{
echo " None\n";
}
}
}
}

function main()
{
//Object of Binary Tree
\$tree = new BinaryTree();
/*
Construct Binary Tree
-----------------------
10
/   \
2     3
/     / \
4     9   5
/  \    \    \
7    3    6   20
/  \     /
2    8   -3
\
9
-----------------------
*/
\$tree->root = new TreeNode(10);
\$tree->root->left = new TreeNode(2);
\$tree->root->right = new TreeNode(3);
\$tree->root->right->right = new TreeNode(5);
\$tree->root->right->left = new TreeNode(9);
\$tree->root->left->left = new TreeNode(4);
\$tree->root->left->left->left = new TreeNode(7);
\$tree->root->left->left->right = new TreeNode(3);
\$tree->root->right->left->right = new TreeNode(6);
\$tree->root->right->right->right = new TreeNode(20);
\$tree->root->right->right->right->left = new TreeNode(-3);
\$tree->root->left->left->right->left = new TreeNode(2);
\$tree->root->left->left->right->right = new TreeNode(8);
\$tree->root->left->left->right->right->right = new TreeNode(9);
\$tree->print_level_nodes(2, 4);
\$tree->print_level_nodes(4, 6);
\$tree->print_level_nodes(1, 3);
\$tree->print_level_nodes(7, 8);
}
main();``````

#### Output

`````` Node between level (2-4) is
2  3  4  9  5  7  3  6  20
Node between level (4-6) is
7  3  6  20  2  8  -3  9
Node between level (1-3) is
10  2  3  4  9  5
Node between level (7-8) is
None``````
``````/*
Node Js program
Print all palindromic levels of a binary tree
*/

//Binary Tree node
class TreeNode
{
constructor(data)
{
//set node value
this.data = data;
this.left = null;
this.right = null;
}
}
// Queue Node
class QueueNode
{
constructor(element, level)
{
this.element = element;
this.next = null;
this.level = level;
}
}
//Define custom queue class
class MyQueue
{
constructor()
{
this.front = null;
this.tail = null;
}
//Add a new node at last of queue
enqueue(element, level)
{
var new_node = new QueueNode(element, level);
if (this.front == null)
{
//When first node of queue
this.front = new_node;
}
else
{
this.tail.next = new_node;
}
this.tail = new_node;
}
//Delete first node of queue
dequeue()
{
if (this.front != null)
{
if (this.tail == this.front)
{
this.tail = null;
this.front = null;
}
else
{
this.front = this.front.next;
}
}
}
is_empty()
{
if (this.front == null)
{
return true;
}
else
{
return false;
}
}
}
class BinaryTree
{
constructor()
{
// Set initial tree root to null
this.root = null;
}
// This are printing all binary tree nodes, between given (A to B) levels
print_level_nodes(a, b)
{
if (this.root == null)
{
process.stdout.write("\n Empty Binary Tree \n");
}
else
{
//Get top node in tree
var node = this.root;
var level = 1;
//Create a Queue
var queue = new MyQueue();
//Add first node at the level of one
queue.enqueue(node, level);
process.stdout.write("\n Node between level (" + a + "-" + b + ") is \n");
// Result indicator
var status = false;
//Execute loop until the queue is not empty
while (queue.is_empty() == false)
{
node = queue.front.element;
level = queue.front.level;
if (node.left != null)
{
queue.enqueue(node.left, level + 1);
}
if (node.right != null)
{
queue.enqueue(node.right, level + 1);
}
if (level >= a && level <= b)
{
status = true;
process.stdout.write("  " + node.data);
}
//remove element into queue
queue.dequeue();
}
if (status == false)
{
process.stdout.write(" None\n");
}
}
}
}

function main()
{
//Object of Binary Tree
var tree = new BinaryTree();
/*
Construct Binary Tree
-----------------------
10
/   \
2     3
/     / \
4     9   5
/  \    \    \
7    3    6   20
/  \     /
2    8   -3
\
9
-----------------------
*/
tree.root = new TreeNode(10);
tree.root.left = new TreeNode(2);
tree.root.right = new TreeNode(3);
tree.root.right.right = new TreeNode(5);
tree.root.right.left = new TreeNode(9);
tree.root.left.left = new TreeNode(4);
tree.root.left.left.left = new TreeNode(7);
tree.root.left.left.right = new TreeNode(3);
tree.root.right.left.right = new TreeNode(6);
tree.root.right.right.right = new TreeNode(20);
tree.root.right.right.right.left = new TreeNode(-3);
tree.root.left.left.right.left = new TreeNode(2);
tree.root.left.left.right.right = new TreeNode(8);
tree.root.left.left.right.right.right = new TreeNode(9);
tree.print_level_nodes(2, 4);
tree.print_level_nodes(4, 6);
tree.print_level_nodes(1, 3);
tree.print_level_nodes(7, 8);
}
main();``````

#### Output

`````` Node between level (2-4) is
2  3  4  9  5  7  3  6  20
Node between level (4-6) is
7  3  6  20  2  8  -3  9
Node between level (1-3) is
10  2  3  4  9  5
Node between level (7-8) is
None``````
``````#   Python 3 program
#   Print all palindromic levels of a binary tree

# Binary Tree node
class TreeNode :

def __init__(self, data) :
# set node value
self.data = data
self.left = None
self.right = None

#  Queue Node
class QueueNode :

def __init__(self, element, level) :
self.element = element
self.next = None
self.level = level

# Define custom queue class
class MyQueue :

def __init__(self) :
self.front = None
self.tail = None

# Add a new node at last of queue
def enqueue(self, element, level) :
new_node = QueueNode(element, level)
if (self.front == None) :
# When first node of queue
self.front = new_node
else :
# Add node at last position
self.tail.next = new_node

self.tail = new_node

# Delete first node of queue
def dequeue(self) :
if (self.front != None) :
if (self.tail == self.front) :
self.tail = None
self.front = None
else :
self.front = self.front.next

def is_empty(self) :
if (self.front == None) :
return True
else :
return False

class BinaryTree :

def __init__(self) :
#  Set initial tree root to null
self.root = None

#  This are printing all binary tree nodes, between given (A to B) levels
def print_level_nodes(self, a, b) :
if (self.root == None) :
print("\n Empty Binary Tree \n", end = "")
else :
# Get top node in tree
node = self.root
level = 1
# Create a Queue
queue = MyQueue()
# Add first node at the level of one
queue.enqueue(node, level)
print("\n Node between level (", a ,"-", b ,") is \n", end = "")
#  Result indicator
status = False
# Execute loop until the queue is not empty
while (queue.is_empty() == False) :
node = queue.front.element
level = queue.front.level
if (node.left != None) :
queue.enqueue(node.left, level + 1)

if (node.right != None) :
queue.enqueue(node.right, level + 1)

if (level >= a and level <= b) :
status = True
print("  ", node.data, end = "")

# remove element into queue
queue.dequeue()

if (status == False) :
print(" None\n", end = "")

def main() :
# Object of Binary Tree
tree = BinaryTree()
#
# 		Construct Binary Tree
# 		-----------------------
# 		       10
# 		     /   \
# 		    2     3
# 		   /     / \
# 		  4     9   5
# 		 /  \    \    \
# 		7    3    6   20
# 		    /  \     /
# 		   2    8   -3
# 		         \
# 		          9
# 		-----------------------
#

tree.root = TreeNode(10)
tree.root.left = TreeNode(2)
tree.root.right = TreeNode(3)
tree.root.right.right = TreeNode(5)
tree.root.right.left = TreeNode(9)
tree.root.left.left = TreeNode(4)
tree.root.left.left.left = TreeNode(7)
tree.root.left.left.right = TreeNode(3)
tree.root.right.left.right = TreeNode(6)
tree.root.right.right.right = TreeNode(20)
tree.root.right.right.right.left = TreeNode(-3)
tree.root.left.left.right.left = TreeNode(2)
tree.root.left.left.right.right = TreeNode(8)
tree.root.left.left.right.right.right = TreeNode(9)
tree.print_level_nodes(2, 4)
tree.print_level_nodes(4, 6)
tree.print_level_nodes(1, 3)
tree.print_level_nodes(7, 8)

if __name__ == "__main__": main()``````

#### Output

`````` Node between level ( 2 - 4 ) is
2   3   4   9   5   7   3   6   20
Node between level ( 4 - 6 ) is
7   3   6   20   2   8   -3   9
Node between level ( 1 - 3 ) is
10   2   3   4   9   5
Node between level ( 7 - 8 ) is
None``````
``````#   Ruby program
#   Print all palindromic levels of a binary tree

# Binary Tree node
class TreeNode
# Define the accessor and reader of class TreeNode
attr_accessor :data, :left, :right

def initialize(data)
# set node value
self.data = data
self.left = nil
self.right = nil
end

end

#  Queue Node
class QueueNode
# Define the accessor and reader of class QueueNode
attr_accessor :element, :next, :level

def initialize(element, level)
self.element = element
self.next = nil
self.level = level
end

end

# Define custom queue class
class MyQueue
# Define the accessor and reader of class MyQueue
attr_accessor :front, :tail

def initialize()
self.front = nil
self.tail = nil
end

# Add a new node at last of queue
def enqueue(element, level)
new_node = QueueNode.new(element, level)
if (self.front == nil)
# When first node of queue
self.front = new_node
else
# Add node at last position
self.tail.next = new_node
end

self.tail = new_node
end

# Delete first node of queue
def dequeue()
if (self.front != nil)
if (self.tail == self.front)
self.tail = nil
self.front = nil
else
self.front = self.front.next
end

end

end

def is_empty()
if (self.front == nil)
return true
else
return false
end

end

end

class BinaryTree
# Define the accessor and reader of class BinaryTree
attr_accessor :root

def initialize()
#  Set initial tree root to null
self.root = nil
end

#  This are printing all binary tree nodes, between given (A to B) levels
def print_level_nodes(a, b)
if (self.root == nil)
print("\n Empty Binary Tree \n")
else
# Get top node in tree
node = self.root
level = 1
# Create a Queue
queue = MyQueue.new()
# Add first node at the level of one
queue.enqueue(node, level)
print("\n Node between level (", a ,"-", b ,") is \n")
#  Result indicator
status = false
# Execute loop until the queue is not empty
while (queue.is_empty() == false)
node = queue.front.element
level = queue.front.level
if (node.left != nil)
queue.enqueue(node.left, level + 1)
end

if (node.right != nil)
queue.enqueue(node.right, level + 1)
end

if (level >= a && level <= b)
status = true
print("  ", node.data)
end

# remove element into queue
queue.dequeue()
end

if (status == false)
print(" None\n")
end

end

end

end

def main()
# Object of Binary Tree
tree = BinaryTree.new()
#
# 		Construct Binary Tree
# 		-----------------------
# 		       10
# 		     /   \
# 		    2     3
# 		   /     / \
# 		  4     9   5
# 		 /  \    \    \
# 		7    3    6   20
# 		    /  \     /
# 		   2    8   -3
# 		         \
# 		          9
# 		-----------------------
#

tree.root = TreeNode.new(10)
tree.root.left = TreeNode.new(2)
tree.root.right = TreeNode.new(3)
tree.root.right.right = TreeNode.new(5)
tree.root.right.left = TreeNode.new(9)
tree.root.left.left = TreeNode.new(4)
tree.root.left.left.left = TreeNode.new(7)
tree.root.left.left.right = TreeNode.new(3)
tree.root.right.left.right = TreeNode.new(6)
tree.root.right.right.right = TreeNode.new(20)
tree.root.right.right.right.left = TreeNode.new(-3)
tree.root.left.left.right.left = TreeNode.new(2)
tree.root.left.left.right.right = TreeNode.new(8)
tree.root.left.left.right.right.right = TreeNode.new(9)
tree.print_level_nodes(2, 4)
tree.print_level_nodes(4, 6)
tree.print_level_nodes(1, 3)
tree.print_level_nodes(7, 8)
end

main()``````

#### Output

`````` Node between level (2-4) is
2  3  4  9  5  7  3  6  20
Node between level (4-6) is
7  3  6  20  2  8  -3  9
Node between level (1-3) is
10  2  3  4  9  5
Node between level (7-8) is
None
``````
``````/*
Scala program
Print all palindromic levels of a binary tree
*/

//Binary Tree node
class TreeNode(var data: Int,
var left: TreeNode,
var right: TreeNode)
{
def this(data: Int)
{
this(data, null, null);
}
}
// Queue Node
class QueueNode(var element: TreeNode,
var next: QueueNode,
var level: Int)
{
def this(element: TreeNode, level: Int)
{
this(element, null, level);
}
}
//Define custom queue class
class MyQueue(var front: QueueNode,
var tail: QueueNode)
{
def this()
{
this(null, null);
}
//Add a new node at last of queue
def enqueue(element: TreeNode, level: Int): Unit = {
var new_node: QueueNode = new QueueNode(element, level);
if (this.front == null)
{
//When first node of queue
this.front = new_node;
}
else
{
this.tail.next = new_node;
}
this.tail = new_node;
}
//Delete first node of queue
def dequeue(): Unit = {
if (this.front != null)
{
if (this.tail == this.front)
{
this.tail = null;
this.front = null;
}
else
{
this.front = this.front.next;
}
}
}
def is_empty(): Boolean = {
if (this.front == null)
{
return true;
}
else
{
return false;
}
}
}
class BinaryTree(var root: TreeNode)
{
def this()
{
this(null);
}
// This are printing all binary tree nodes, between given (A to B) levels
def print_level_nodes(a: Int, b: Int): Unit = {
if (this.root == null)
{
print("\n Empty Binary Tree \n");
}
else
{
//Get top node in tree
var node: TreeNode = this.root;
var level: Int = 1;
//Create a Queue
var queue: MyQueue = new MyQueue();
//Add first node at the level of one
queue.enqueue(node, level);
print("\n Node between level (" + a + "-" + b + ") is \n");
// Result indicator
var status: Boolean = false;
//Execute loop until the queue is not empty
while (queue.is_empty() == false)
{
node = queue.front.element;
level = queue.front.level;
if (node.left != null)
{
queue.enqueue(node.left, level + 1);
}
if (node.right != null)
{
queue.enqueue(node.right, level + 1);
}
if (level >= a && level <= b)
{
status = true;
print("  " + node.data);
}
//remove element into queue
queue.dequeue();
}
if (status == false)
{
print(" None\n");
}
}
}
}
object Main
{
def main(args: Array[String]): Unit = {
//Object of Binary Tree
var tree: BinaryTree = new BinaryTree();
/*
Construct Binary Tree
-----------------------
10
/   \
2     3
/     / \
4     9   5
/  \    \    \
7    3    6   20
/  \     /
2    8   -3
\
9
-----------------------
*/
tree.root = new TreeNode(10);
tree.root.left = new TreeNode(2);
tree.root.right = new TreeNode(3);
tree.root.right.right = new TreeNode(5);
tree.root.right.left = new TreeNode(9);
tree.root.left.left = new TreeNode(4);
tree.root.left.left.left = new TreeNode(7);
tree.root.left.left.right = new TreeNode(3);
tree.root.right.left.right = new TreeNode(6);
tree.root.right.right.right = new TreeNode(20);
tree.root.right.right.right.left = new TreeNode(-3);
tree.root.left.left.right.left = new TreeNode(2);
tree.root.left.left.right.right = new TreeNode(8);
tree.root.left.left.right.right.right = new TreeNode(9);
tree.print_level_nodes(2, 4);
tree.print_level_nodes(4, 6);
tree.print_level_nodes(1, 3);
tree.print_level_nodes(7, 8);
}
}``````

#### Output

`````` Node between level (2-4) is
2  3  4  9  5  7  3  6  20
Node between level (4-6) is
7  3  6  20  2  8  -3  9
Node between level (1-3) is
10  2  3  4  9  5
Node between level (7-8) is
None``````
``````/*
Swift 4 program
Print all palindromic levels of a binary tree
*/
//Binary Tree node
class TreeNode
{
var data: Int;
var left: TreeNode? ;
var right: TreeNode? ;
init(_ data: Int)
{
//set node value
self.data = data;
self.left = nil;
self.right = nil;
}
}
// Queue Node
class QueueNode
{
var element: TreeNode? ;
var next: QueueNode? ;
var level: Int;
init(_ element: TreeNode? , _ level : Int)
{
self.element = element;
self.next = nil;
self.level = level;
}
}
//Define custom queue class
class MyQueue
{
var front: QueueNode? ;
var tail: QueueNode? ;
init()
{
self.front = nil;
self.tail = nil;
}
//Add a new node at last of queue
func enqueue(_ element: TreeNode? , _ level : Int)
{
let new_node: QueueNode? = QueueNode(element, level);
if (self.front == nil)
{
//When first node of queue
self.front = new_node;
}
else
{
self.tail!.next = new_node;
}
self.tail = new_node;
}
//Delete first node of queue
func dequeue()
{
if (self.front != nil)
{
if (self.tail === self.front)
{
self.tail = nil;
self.front = nil;
}
else
{
self.front = self.front!.next;
}
}
}
func is_empty() -> Bool
{
if (self.front == nil)
{
return true;
}
else
{
return false;
}
}
}
class BinaryTree
{
var root: TreeNode? ;
init()
{
// Set initial tree root to null
self.root = nil;
}
// This are printing all binary tree nodes, between given (A to B) levels
func print_level_nodes(_ a: Int, _ b: Int)
{
if (self.root == nil)
{
print("\n Empty Binary Tree \n", terminator: "");
}
else
{
//Get top node in tree
var node: TreeNode? = self.root;
var level: Int = 1;
//Create a Queue
let queue: MyQueue = MyQueue();
//Add first node at the level of one
queue.enqueue(node, level);
print("\n Node between level (", a ,"-", b ,") is \n", terminator: "");
// Result indicator
var status: Bool = false;
//Execute loop until the queue is not empty
while (queue.is_empty() == false)
{
node = queue.front!.element;
level = queue.front!.level;
if (node!.left != nil)
{
queue.enqueue(node!.left, level + 1);
}
if (node!.right != nil)
{
queue.enqueue(node!.right, level + 1);
}
if (level >= a && level <= b)
{
status = true;
print("  ", node!.data, terminator: "");
}
//remove element into queue
queue.dequeue();
}
if (status == false)
{
print(" None\n", terminator: "");
}
}
}
}
func main()
{
//Object of Binary Tree
let tree: BinaryTree = BinaryTree();
tree.root = TreeNode(10);
tree.root!.left = TreeNode(2);
tree.root!.right = TreeNode(3);
tree.root!.right!.right = TreeNode(5);
tree.root!.right!.left = TreeNode(9);
tree.root!.left!.left = TreeNode(4);
tree.root!.left!.left!.left = TreeNode(7);
tree.root!.left!.left!.right = TreeNode(3);
tree.root!.right!.left!.right = TreeNode(6);
tree.root!.right!.right!.right = TreeNode(20);
tree.root!.right!.right!.right!.left = TreeNode(-3);
tree.root!.left!.left!.right!.left = TreeNode(2);
tree.root!.left!.left!.right!.right = TreeNode(8);
tree.root!.left!.left!.right!.right!.right = TreeNode(9);
tree.print_level_nodes(2, 4);
tree.print_level_nodes(4, 6);
tree.print_level_nodes(1, 3);
tree.print_level_nodes(7, 8);
}
main();``````

#### Output

`````` Node between level ( 2 - 4 ) is
2   3   4   9   5   7   3   6   20
Node between level ( 4 - 6 ) is
7   3   6   20   2   8   -3   9
Node between level ( 1 - 3 ) is
10   2   3   4   9   5
Node between level ( 7 - 8 ) is
None``````

## Algorithm

1. Define the `TreeNode` class to represent a node in the binary tree. Each node will have a data value and pointers to its left and right children.
2. Define the `QueueNode` class to represent a node in the custom queue. Each node will contain a pointer to a binary tree node, its level, and a link to the next node in the queue.
3. Define the `MyQueue` class to implement the custom queue. It will have methods to enqueue and dequeue nodes, as well as a method to check if the queue is empty.
4. Define the `BinaryTree` class to represent the binary tree. It will have a method `print_level_nodes(int a, int b)` to print all the nodes between levels `a` and `b`.
5. Perform a level order traversal of the binary tree using a queue. For each level, check if it falls between the given levels `a` and `b` (inclusive). If it does, print the nodes; otherwise, skip that level.

## Time Complexity

• The time complexity of performing a level order traversal of the binary tree to find nodes between two levels is O(N), where N is the number of nodes in the tree.
• Therefore, the overall time complexity of the algorithm is O(N), where N is the number of nodes in the binary tree.

## Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

Categories
Relative Post