Print the longest path from root to leaf in a binary tree

Here given code implementation process.

import java.util.ArrayList;
/*
Java Program
Print the longest path from root to leaf in a binary tree
*/
// Binary Tree node
class TreeNode
{
public int data;
public TreeNode left;
public TreeNode right;
public TreeNode(int data)
{
// Set node value
this.data = data;
this.left = null;
this.right = null;
}
}
public class BinaryTree
{
public TreeNode root;
public BinaryTree()
{
// Set initial tree root to null
this.root = null;
}
// Display given path
public void printPath(ArrayList < Integer > path)
{
int i = 0;
// print path
while (i < path.size())
{
System.out.print(" " + path.get(i));
i++;
}
System.out.print("\n");
}
// Find height of given binary tree
public int treeHeight(TreeNode node)
{
if (node != null)
{
int a = treeHeight(node.left);
int b = treeHeight(node.right);
if (a > b)
{
return a + 1;
}
else
{
return b + 1;
}
}
else
{
return 0;
}
}
// Find all longest path using recursion
public void findLongestPath(TreeNode node,
ArrayList < Integer > path, int height)
{
if (node == null)
{
return;
}
if (node.left == null && node.right == null)
{
if (height == 0)
{
printPath(path);
}
}
else
{
findLongestPath(node.left, path, height - 1);
findLongestPath(node.right, path, height - 1);
}
// Remove last node in path
path.remove(path.size() - 1);
}
// Handles the request of finding longest path in tree
public void longestPaths()
{
// This is use to collect sort path
ArrayList < Integer > path = new ArrayList < Integer > ();
if (this.root == null)
{
// Empty Tree
return;
}
else
{
findLongestPath(this.root, path, treeHeight(this.root)-1);
}
}
public static void main(String[] args)
{
// Create new binary tree
BinaryTree tree = new BinaryTree();
/*
4
/   \
9     7
/ \     \
2   5     12
/ \    / \
6   8  5   18
/   /    \
19  3      15
\      \
10     1
-----------------
Constructing binary tree
*/
tree.root = new TreeNode(4);
tree.root.left = new TreeNode(9);
tree.root.left.right = new TreeNode(5);
tree.root.left.right.left = new TreeNode(6);
tree.root.left.right.left.left = new TreeNode(19);
tree.root.left.right.right = new TreeNode(8);
tree.root.left.right.right.left = new TreeNode(3);
tree.root.left.right.right.left.right = new TreeNode(10);
tree.root.left.left = new TreeNode(2);
tree.root.right = new TreeNode(7);
tree.root.right.right = new TreeNode(12);
tree.root.right.right.right = new TreeNode(18);
tree.root.right.right.left = new TreeNode(5);
tree.root.right.right.left.right = new TreeNode(15);
tree.root.right.right.left.right.right = new TreeNode(1);
tree.longestPaths();
}
}

input

4 9 5 8 3 10
4 7 12 5 15 1
#include <iostream>
#include <vector>
using namespace std;

/*
C++ Program
Print the longest path from root to leaf in a binary tree
*/

// Binary Tree node
class TreeNode
{
public: int data;
TreeNode *left;
TreeNode *right;
TreeNode(int data)
{
// Set node value
this->data = data;
this->left = NULL;
this->right = NULL;
}
};
class BinaryTree
{
public: TreeNode *root;
BinaryTree()
{
this->root = NULL;
}
// Display given path
void printPath(vector < int > path)
{
int i = 0;
// print path
while (i < path.size())
{
cout << " " << path.at(i);
i++;
}
cout << "\n";
}
// Find height of given binary tree
int treeHeight(TreeNode *node)
{
if (node != NULL)
{
int a = this->treeHeight(node->left);
int b = this->treeHeight(node->right);
if (a > b)
{
return a + 1;
}
else
{
return b + 1;
}
}
else
{
return 0;
}
}
// Find all longest path using recursion
void findLongestPath(TreeNode *node, vector < int > path, int height)
{
if (node == NULL)
{
return;
}
path.push_back(node->data);
if (node->left == NULL && node->right == NULL)
{
if (height == 0)
{
this->printPath(path);
}
}
else
{
this->findLongestPath(node->left, path, height - 1);
this->findLongestPath(node->right, path, height - 1);
}
// Remove last node in path
path.pop_back();
}
// Handles the request of finding longest path in tree
void longestPaths()
{
// This is use to collect sort path
vector < int > path;
if (this->root == NULL)
{
// Empty Tree
return;
}
else
{
this->findLongestPath(this->root, path, this->treeHeight(this->root) - 1);
}
}
};
int main()
{
// Create new binary tree
BinaryTree *tree = new BinaryTree();
/*
4
/   \
9     7
/ \     \
2   5     12
/ \    / \
6   8  5   18
/   /    \
19  3      15
\      \
10     1
-----------------
Constructing binary tree
*/
tree->root = new TreeNode(4);
tree->root->left = new TreeNode(9);
tree->root->left->right = new TreeNode(5);
tree->root->left->right->left = new TreeNode(6);
tree->root->left->right->left->left = new TreeNode(19);
tree->root->left->right->right = new TreeNode(8);
tree->root->left->right->right->left = new TreeNode(3);
tree->root->left->right->right->left->right = new TreeNode(10);
tree->root->left->left = new TreeNode(2);
tree->root->right = new TreeNode(7);
tree->root->right->right = new TreeNode(12);
tree->root->right->right->right = new TreeNode(18);
tree->root->right->right->left = new TreeNode(5);
tree->root->right->right->left->right = new TreeNode(15);
tree->root->right->right->left->right->right = new TreeNode(1);
tree->longestPaths();
return 0;
}

input

4 9 5 8 3 10
4 7 12 5 15 1
// Include namespace system
using System;
using System.Collections.Generic;
/*
Csharp Program
Print the longest path from root to leaf in a binary tree
*/

// Binary Tree node
public class TreeNode
{
public int data;
public TreeNode left;
public TreeNode right;
public TreeNode(int data)
{
// Set node value
this.data = data;
this.left = null;
this.right = null;
}
}
public class BinaryTree
{
public TreeNode root;
public BinaryTree()
{
// Set initial tree root to null
this.root = null;
}
// Display given path
public void printPath(List < int > path)
{
int i = 0;
// print path
while (i < path.Count)
{
Console.Write(" " + path[i]);
i++;
}
Console.Write("\n");
}
// Find height of given binary tree
public int treeHeight(TreeNode node)
{
if (node != null)
{
int a = this.treeHeight(node.left);
int b = this.treeHeight(node.right);
if (a > b)
{
return a + 1;
}
else
{
return b + 1;
}
}
else
{
return 0;
}
}
// Find all longest path using recursion
public void findLongestPath(TreeNode node, List < int > path, int height)
{
if (node == null)
{
return;
}
if (node.left == null && node.right == null)
{
if (height == 0)
{
this.printPath(path);
}
}
else
{
this.findLongestPath(node.left, path, height - 1);
this.findLongestPath(node.right, path, height - 1);
}
// Remove last node in path
path.RemoveAt(path.Count - 1);
}
// Handles the request of finding longest path in tree
public void longestPaths()
{
// This is use to collect sort path
List < int > path = new List < int > ();
if (this.root == null)
{
// Empty Tree
return;
}
else
{
this.findLongestPath(this.root, path,
this.treeHeight(this.root) - 1);
}
}
public static void Main(String[] args)
{
// Create new binary tree
BinaryTree tree = new BinaryTree();
/*
4
/   \
9     7
/ \     \
2   5     12
/ \    / \
6   8  5   18
/   /    \
19  3      15
\      \
10     1
-----------------
Constructing binary tree
*/
tree.root = new TreeNode(4);
tree.root.left = new TreeNode(9);
tree.root.left.right = new TreeNode(5);
tree.root.left.right.left = new TreeNode(6);
tree.root.left.right.left.left = new TreeNode(19);
tree.root.left.right.right = new TreeNode(8);
tree.root.left.right.right.left = new TreeNode(3);
tree.root.left.right.right.left.right = new TreeNode(10);
tree.root.left.left = new TreeNode(2);
tree.root.right = new TreeNode(7);
tree.root.right.right = new TreeNode(12);
tree.root.right.right.right = new TreeNode(18);
tree.root.right.right.left = new TreeNode(5);
tree.root.right.right.left.right = new TreeNode(15);
tree.root.right.right.left.right.right = new TreeNode(1);
tree.longestPaths();
}
}

input

4 9 5 8 3 10
4 7 12 5 15 1
<?php
/*
Php Program
Print the longest path from root to leaf in a binary tree
*/
// Binary Tree node
class TreeNode
{
public \$data;
public \$left;
public \$right;
public	function __construct(\$data)
{
// Set node value
\$this->data = \$data;
\$this->left = NULL;
\$this->right = NULL;
}
}
class BinaryTree
{
public \$root;
public	function __construct()
{
\$this->root = NULL;
}
// Display given path
public	function printPath(\$path)
{
\$i = 0;
// print path
while (\$i < count(\$path))
{
echo(" ".\$path[\$i]);
\$i++;
}
echo("\n");
}
// Find height of given binary tree
public	function treeHeight(\$node)
{
if (\$node != NULL)
{
\$a = \$this->treeHeight(\$node->left);
\$b = \$this->treeHeight(\$node->right);
if (\$a > \$b)
{
return \$a + 1;
}
else
{
return \$b + 1;
}
}
else
{
return 0;
}
}
// Find all longest path using recursion
public	function findLongestPath(\$node, \$path, \$height)
{
if (\$node == NULL)
{
return;
}
\$path[] = \$node->data;
if (\$node->left == NULL && \$node->right == NULL)
{
if (\$height == 0)
{
\$this->printPath(\$path);
}
}
else
{
\$this->findLongestPath(\$node->left, \$path, \$height - 1);
\$this->findLongestPath(\$node->right, \$path, \$height - 1);
}
// Remove last node in path
array_pop(\$path);
}
// Handles the request of finding longest path in tree
public	function longestPaths()
{
// This is use to collect sort path
\$path = array();
if (\$this->root == NULL)
{
// Empty Tree
return;
}
else
{
\$this->findLongestPath(\$this->root,
\$path, \$this->treeHeight(\$this->root) - 1);
}
}
}

function main()
{
// Create new binary tree
\$tree = new BinaryTree();
/*
4
/   \
9     7
/ \     \
2   5     12
/ \    / \
6   8  5   18
/   /    \
19  3      15
\      \
10     1
-----------------
Constructing binary tree
*/
\$tree->root = new TreeNode(4);
\$tree->root->left = new TreeNode(9);
\$tree->root->left->right = new TreeNode(5);
\$tree->root->left->right->left = new TreeNode(6);
\$tree->root->left->right->left->left = new TreeNode(19);
\$tree->root->left->right->right = new TreeNode(8);
\$tree->root->left->right->right->left = new TreeNode(3);
\$tree->root->left->right->right->left->right = new TreeNode(10);
\$tree->root->left->left = new TreeNode(2);
\$tree->root->right = new TreeNode(7);
\$tree->root->right->right = new TreeNode(12);
\$tree->root->right->right->right = new TreeNode(18);
\$tree->root->right->right->left = new TreeNode(5);
\$tree->root->right->right->left->right = new TreeNode(15);
\$tree->root->right->right->left->right->right = new TreeNode(1);
\$tree->longestPaths();
}
main();

input

4 9 5 8 3 10
4 7 12 5 15 1
/*
Node JS Program
Print the longest path from root to leaf in a binary tree
*/
// Binary Tree node
class TreeNode
{
constructor(data)
{
// Set node value
this.data = data;
this.left = null;
this.right = null;
}
}
class BinaryTree
{
constructor()
{
this.root = null;
}
// Display given path
printPath(path)
{
var i = 0;
// print path
while (i < path.length)
{
process.stdout.write(" " + path[i]);
i++;
}
process.stdout.write("\n");
}
// Find height of given binary tree
treeHeight(node)
{
if (node != null)
{
var a = this.treeHeight(node.left);
var b = this.treeHeight(node.right);
if (a > b)
{
return a + 1;
}
else
{
return b + 1;
}
}
else
{
return 0;
}
}
// Find all longest path using recursion
findLongestPath(node, path, height)
{
if (node == null)
{
return;
}
path.push(node.data);
if (node.left == null && node.right == null)
{
if (height == 0)
{
this.printPath(path);
}
}
else
{
this.findLongestPath(node.left, path, height - 1);
this.findLongestPath(node.right, path, height - 1);
}
// Remove last node in path
path.pop();
}
// Handles the request of finding longest path in tree
longestPaths()
{
// This is use to collect sort path
var path = [];
if (this.root == null)
{
// Empty Tree
return;
}
else
{
this.findLongestPath(this.root,
path, this.treeHeight(this.root) - 1);
}
}
}

function main()
{
// Create new binary tree
var tree = new BinaryTree();
/*
4
/   \
9     7
/ \     \
2   5     12
/ \    / \
6   8  5   18
/   /    \
19  3      15
\      \
10     1
-----------------
Constructing binary tree
*/
tree.root = new TreeNode(4);
tree.root.left = new TreeNode(9);
tree.root.left.right = new TreeNode(5);
tree.root.left.right.left = new TreeNode(6);
tree.root.left.right.left.left = new TreeNode(19);
tree.root.left.right.right = new TreeNode(8);
tree.root.left.right.right.left = new TreeNode(3);
tree.root.left.right.right.left.right = new TreeNode(10);
tree.root.left.left = new TreeNode(2);
tree.root.right = new TreeNode(7);
tree.root.right.right = new TreeNode(12);
tree.root.right.right.right = new TreeNode(18);
tree.root.right.right.left = new TreeNode(5);
tree.root.right.right.left.right = new TreeNode(15);
tree.root.right.right.left.right.right = new TreeNode(1);
tree.longestPaths();
}
main();

input

4 9 5 8 3 10
4 7 12 5 15 1
#    Python 3 Program
#    Print the longest path from root to leaf in a binary tree

#  Binary Tree node
class TreeNode :
def __init__(self, data) :
#  Set node value
self.data = data
self.left = None
self.right = None

class BinaryTree :
def __init__(self) :
self.root = None

#  Display given path
def printPath(self, path) :
i = 0
#  print path
while (i < len(path)) :
print(" ", path[i], end = "")
i += 1

print(end = "\n")

#  Find height of given binary tree
def treeHeight(self, node) :
if (node != None) :
a = self.treeHeight(node.left)
b = self.treeHeight(node.right)
if (a > b) :
return a + 1
else :
return b + 1

else :
return 0

#  Find all longest path using recursion
def findLongestPath(self, node, path, height) :
if (node == None) :
return

path.append(node.data)
if (node.left == None and node.right == None) :
if (height == 0) :
self.printPath(path)

else :
self.findLongestPath(node.left, path, height - 1)
self.findLongestPath(node.right, path, height - 1)

#  Remove last node in path
del path[len(path) - 1]

#  Handles the request of finding longest path in tree
def longestPaths(self) :
#  This is use to collect sort path
path = []
if (self.root == None) :
#  Empty Tree
return
else :
self.findLongestPath(self.root,
path, self.treeHeight(self.root) - 1)

def main() :
#  Create new binary tree
tree = BinaryTree()
#         4
#       /   \
#      9     7
#     / \     \
#    2   5     12
#       / \    / \
#      6   8  5   18
#     /   /    \
#    19  3      15
#         \      \
#          10     1
# -----------------
# Constructing binary tree
tree.root = TreeNode(4)
tree.root.left = TreeNode(9)
tree.root.left.right = TreeNode(5)
tree.root.left.right.left = TreeNode(6)
tree.root.left.right.left.left = TreeNode(19)
tree.root.left.right.right = TreeNode(8)
tree.root.left.right.right.left = TreeNode(3)
tree.root.left.right.right.left.right = TreeNode(10)
tree.root.left.left = TreeNode(2)
tree.root.right = TreeNode(7)
tree.root.right.right = TreeNode(12)
tree.root.right.right.right = TreeNode(18)
tree.root.right.right.left = TreeNode(5)
tree.root.right.right.left.right = TreeNode(15)
tree.root.right.right.left.right.right = TreeNode(1)
tree.longestPaths()

if __name__ == "__main__": main()

input

4  9  5  8  3  10
4  7  12  5  15  1
#    Ruby Program
#    Print the longest path from root to leaf in a binary tree

#  Binary Tree node
class TreeNode
# Define the accessor and reader of class TreeNode
attr_accessor :data, :left, :right
def initialize(data)
#  Set node value
self.data = data
self.left = nil
self.right = nil
end

end

class BinaryTree
# Define the accessor and reader of class BinaryTree
attr_accessor :root
def initialize()
self.root = nil
end

#  Display given path
def printPath(path)
i = 0
#  print path
while (i < path.length)
print(" ", path[i])
i += 1
end

print("\n")
end

#  Find height of given binary tree
def treeHeight(node)
if (node != nil)
a = self.treeHeight(node.left)
b = self.treeHeight(node.right)
if (a > b)
return a + 1
else
return b + 1
end
else
return 0
end

end

#  Find all longest path using recursion
def findLongestPath(node, path, height)
if (node == nil)
return
end

path.push(node.data)
if (node.left == nil && node.right == nil)
if (height == 0)
self.printPath(path)
end

else
self.findLongestPath(node.left, path, height - 1)
self.findLongestPath(node.right, path, height - 1)
end

#  Remove last node in path
path.delete_at(path.length - 1)
end

#  Handles the request of finding longest path in tree
def longestPaths()
#  This is use to collect sort path
path = []
if (self.root == nil)
#  Empty Tree
return
else
self.findLongestPath(self.root,
path, self.treeHeight(self.root) - 1)
end

end

end

def main()
#  Create new binary tree
tree = BinaryTree.new()
#         4
#       /   \
#      9     7
#     / \     \
#    2   5     12
#       / \    / \
#      6   8  5   18
#     /   /    \
#    19  3      15
#         \      \
#          10     1
# -----------------
# Constructing binary tree
tree.root = TreeNode.new(4)
tree.root.left = TreeNode.new(9)
tree.root.left.right = TreeNode.new(5)
tree.root.left.right.left = TreeNode.new(6)
tree.root.left.right.left.left = TreeNode.new(19)
tree.root.left.right.right = TreeNode.new(8)
tree.root.left.right.right.left = TreeNode.new(3)
tree.root.left.right.right.left.right = TreeNode.new(10)
tree.root.left.left = TreeNode.new(2)
tree.root.right = TreeNode.new(7)
tree.root.right.right = TreeNode.new(12)
tree.root.right.right.right = TreeNode.new(18)
tree.root.right.right.left = TreeNode.new(5)
tree.root.right.right.left.right = TreeNode.new(15)
tree.root.right.right.left.right.right = TreeNode.new(1)
tree.longestPaths()
end

main()

input

4 9 5 8 3 10
4 7 12 5 15 1
import scala.collection.mutable._;
/*
Scala Program
Print the longest path from root to leaf in a binary tree
*/
// Binary Tree node
class TreeNode(var data: Int,
var left: TreeNode,
var right: TreeNode)
{
def this(data: Int)
{
// Set node value
this(data,null,null);
}
}
class BinaryTree(var root: TreeNode)
{
def this()
{
this(null);
}
// Display given path
def printPath(path: ArrayBuffer[Int]): Unit = {
var i: Int = 0;
// print path
while (i < path.size)
{
print(" " + path(i));
i += 1;
}
print("\n");
}
// Find height of given binary tree
def treeHeight(node: TreeNode): Int = {
if (node != null)
{
var a: Int = treeHeight(node.left);
var b: Int = treeHeight(node.right);
if (a > b)
{
return a + 1;
}
else
{
return b + 1;
}
}
else
{
return 0;
}
}
// Find all longest path using recursion
def findLongestPath(node: TreeNode, path:
ArrayBuffer[Int], height: Int): Unit = {
if (node == null)
{
return;
}
path += node.data;
if (node.left == null && node.right == null)
{
if (height == 0)
{
printPath(path);
}
}
else
{
findLongestPath(node.left, path, height - 1);
findLongestPath(node.right, path, height - 1);
}
// Remove last node in path
path.remove(path.size - 1);
}
// Handles the request of finding longest path in tree
def longestPaths(): Unit = {
// This is use to collect sort path
var path: ArrayBuffer[Int] = new ArrayBuffer[Int]();
if (this.root == null)
{
// Empty Tree
return;
}
else
{
findLongestPath(this.root, path, treeHeight(this.root) - 1);
}
}
}
object Main
{
def main(args: Array[String]): Unit = {
// Create new binary tree
var tree: BinaryTree = new BinaryTree();
/*
4
/   \
9     7
/ \     \
2   5     12
/ \    / \
6   8  5   18
/   /    \
19  3      15
\      \
10     1
-----------------
Constructing binary tree
*/
tree.root = new TreeNode(4);
tree.root.left = new TreeNode(9);
tree.root.left.right = new TreeNode(5);
tree.root.left.right.left = new TreeNode(6);
tree.root.left.right.left.left = new TreeNode(19);
tree.root.left.right.right = new TreeNode(8);
tree.root.left.right.right.left = new TreeNode(3);
tree.root.left.right.right.left.right = new TreeNode(10);
tree.root.left.left = new TreeNode(2);
tree.root.right = new TreeNode(7);
tree.root.right.right = new TreeNode(12);
tree.root.right.right.right = new TreeNode(18);
tree.root.right.right.left = new TreeNode(5);
tree.root.right.right.left.right = new TreeNode(15);
tree.root.right.right.left.right.right = new TreeNode(1);
tree.longestPaths();
}
}

input

4 9 5 8 3 10
4 7 12 5 15 1
import Foundation;
/*
Swift 4 Program
Print the longest path from root to leaf in a binary tree
*/
// Binary Tree node
class TreeNode
{
var data: Int;
var left: TreeNode? ;
var right: TreeNode? ;
init(_ data: Int)
{
// Set node value
self.data = data;
self.left = nil;
self.right = nil;
}
}
class BinaryTree
{
var root: TreeNode? ;
init()
{
self.root = nil;
}
// Display given path
func printPath(_ path: [Int])
{
var i = 0;
// print path
while (i < path.count)
{
print(" ", path[i], terminator: "");
i += 1;
}
print(terminator: "\n");
}
// Find height of given binary tree
func treeHeight(_ node: TreeNode? ) -> Int
{
if (node  != nil)
{
let a = self.treeHeight(node!.left);
let b = self.treeHeight(node!.right);
if (a > b)
{
return a + 1;
}
else
{
return b + 1;
}
}
else
{
return 0;
}
}
// Find all longest path using recursion
func findLongestPath(_ node: TreeNode? , _ path : inout[Int], _ height: Int)
{
if (node == nil)
{
return;
}
path.append(node!.data);
if (node!.left == nil && node!.right == nil)
{
if (height == 0)
{
self.printPath(path);
}
}
else
{
self.findLongestPath(node!.left, &path, height - 1);
self.findLongestPath(node!.right, &path, height - 1);
}
// Remove last node in path
path.removeLast();
}
// Handles the request of finding longest path in tree
func longestPaths()
{
// This is use to collect sort path
var path = [Int]();
if (self.root == nil)
{
// Empty Tree
return;
}
else
{
self.findLongestPath(self.root, &path,
self.treeHeight(self.root) - 1);
}
}
}
func main()
{
// Create new binary tree
let tree = BinaryTree();
/*
4
/   \
9     7
/ \     \
2   5     12
/ \    / \
6   8  5   18
/   /    \
19  3      15
\      \
10     1
-----------------
Constructing binary tree
*/
tree.root = TreeNode(4);
tree.root!.left = TreeNode(9);
tree.root!.left!.right = TreeNode(5);
tree.root!.left!.right!.left = TreeNode(6);
tree.root!.left!.right!.left!.left = TreeNode(19);
tree.root!.left!.right!.right = TreeNode(8);
tree.root!.left!.right!.right!.left = TreeNode(3);
tree.root!.left!.right!.right!.left!.right = TreeNode(10);
tree.root!.left!.left = TreeNode(2);
tree.root!.right = TreeNode(7);
tree.root!.right!.right = TreeNode(12);
tree.root!.right!.right!.right = TreeNode(18);
tree.root!.right!.right!.left = TreeNode(5);
tree.root!.right!.right!.left!.right = TreeNode(15);
tree.root!.right!.right!.left!.right!.right = TreeNode(1);
tree.longestPaths();
}
main();

input

4  9  5  8  3  10
4  7  12  5  15  1
/*
Kotlin Program
Print the longest path from root to leaf in a binary tree
*/
// Binary Tree node
class TreeNode
{
var data: Int;
var left: TreeNode ? ;
var right: TreeNode ? ;
constructor(data: Int)
{
// Set node value
this.data = data;
this.left = null;
this.right = null;
}
}
class BinaryTree
{
var root: TreeNode ? ;
constructor()
{
this.root = null;
}
// Display given path
fun printPath(path: MutableList<Int> ): Unit
{
var i: Int = 0;
// print path
while (i < path.size)
{
print(" " + path[i]);
i += 1;
}
print("\n");
}
// Find height of given binary tree
fun treeHeight(node: TreeNode ? ): Int
{
if (node != null)
{
val a: Int = this.treeHeight(node.left);
val b: Int = this.treeHeight(node.right);
if (a > b)
{
return a + 1;
}
else
{
return b + 1;
}
}
else
{
return 0;
}
}
// Find all longest path using recursion
fun findLongestPath(node: TreeNode ? ,
path : MutableList<Int> , height : Int): Unit
{
if (node == null)
{
return;
}
if (node.left == null && node.right == null)
{
if (height == 0)
{
this.printPath(path);
}
}
else
{
this.findLongestPath(node.left, path, height - 1);
this.findLongestPath(node.right, path, height - 1);
}
// Remove last node in path
path.removeAt(path.size - 1);
}
// Handles the request of finding longest path in tree
fun longestPaths(): Unit
{
// This is use to collect sort path
var path = mutableListOf<Int>();
if (this.root == null)
{
// Empty Tree
return;
}
else
{
this.findLongestPath(this.root,
path, this.treeHeight(this.root) - 1);
}
}
}
fun main(args: Array < String > ): Unit
{
// Create new binary tree
val tree: BinaryTree = BinaryTree();
/*
4
/   \
9     7
/ \     \
2   5     12
/ \    / \
6   8  5   18
/   /    \
19  3      15
\      \
10     1
-----------------
Constructing binary tree
*/
tree.root = TreeNode(4);
tree.root?.left = TreeNode(9);
tree.root?.left?.right = TreeNode(5);
tree.root?.left?.right?.left = TreeNode(6);
tree.root?.left?.right?.left?.left = TreeNode(19);
tree.root?.left?.right?.right = TreeNode(8);
tree.root?.left?.right?.right?.left = TreeNode(3);
tree.root?.left?.right?.right?.left?.right = TreeNode(10);
tree.root?.left?.left = TreeNode(2);
tree.root?.right = TreeNode(7);
tree.root?.right?.right = TreeNode(12);
tree.root?.right?.right?.right = TreeNode(18);
tree.root?.right?.right?.left = TreeNode(5);
tree.root?.right?.right?.left?.right = TreeNode(15);
tree.root?.right?.right?.left?.right?.right = TreeNode(1);
tree.longestPaths();
}

4 9 5 8 3 10
4 7 12 5 15 1

Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.