Print the combinations of given vertices which connect of M edges they not contain cycle and its path cost is positive by node
Here given code implementation process.
// C program for
// Print the combinations of given vertices which connect of M edges
// they not contain cycle and its path cost is positive by node
#include <stdio.h>
void findCombination(int vertex[],
int result[], int visit[],
int cost,
int count,
int n,
int edge)
{
if (count - 1 == edge && cost > 0)
{
for (int i = 0; i <= edge; ++i)
{
if (i != 0)
{
printf(" ⤑ ");
}
printf("%d", result[i]);
}
printf(" : %d\n", cost);
}
if (count >= n || count - 1 >= edge ||
(count >= 2 && cost == 0))
{
// Base case
return;
}
for (int i = 0; i < n; ++i)
{
if (visit[i] == -1)
{
visit[i] = i;
// Collect resultant node
result[count] = vertex[i];
if (count == 0)
{
// Find combinations using recursively
findCombination(vertex, result,
visit, vertex[i], count + 1, n, edge);
}
else
{
// Find combinations using recursively
findCombination(vertex,
result, visit, vertex[i] & cost,
count + 1, n, edge);
}
visit[i] = -1;
}
}
}
void combination(int vertex[], int n, int edge)
{
if (n <= 0 || edge >= n || edge <= 0)
{
return;
}
int result[edge + 1];
int visit[n];
for (int i = 0; i < n; ++i)
{
visit[i] = -1;
}
// Find combination pair
findCombination(vertex, result, visit, 0, 0, n, edge);
}
int main(int argc, char
const *argv[])
{
// Graph vertex
// Its must be positive because it indicates index node id.
// Assume that given vertex are distinct because we not need cycle.
int vertex[] = {
2 , 16 , 5 , 6 , 7 , 1
};
// Get the number of nodes
int n = sizeof(vertex) / sizeof(vertex[0]);
// number of edge
int m = 2;
/*
arr [] = [2, 16, 5, 6, 7, 1]
-----------------------------
2 ⤑ 6 ⤑ 7 (2&6&7) : 2
2 ⤑ 7 ⤑ 6 (2&7&6) : 2
5 ⤑ 6 ⤑ 7 (5&6&7) : 4
5 ⤑ 7 ⤑ 6 (5&7&6) : 4
5 ⤑ 7 ⤑ 1 (5&7&1) : 1
5 ⤑ 1 ⤑ 7 (5&1&7) : 1
6 ⤑ 2 ⤑ 7 (6&2&7) : 2
6 ⤑ 5 ⤑ 7 (6&5&7) : 4
6 ⤑ 7 ⤑ 2 (6&7&2) : 2
6 ⤑ 7 ⤑ 5 (6&7&5) : 4
7 ⤑ 2 ⤑ 6 (7&2&6) : 2
7 ⤑ 5 ⤑ 6 (7&5&6) : 4
7 ⤑ 5 ⤑ 1 (7&5&1) : 1
7 ⤑ 6 ⤑ 2 (7&6&2) : 2
7 ⤑ 6 ⤑ 5 (7&6&5) : 4
7 ⤑ 1 ⤑ 5 (7&1&5) : 1
1 ⤑ 5 ⤑ 7 (1&5&7) : 1
1 ⤑ 7 ⤑ 5 (1&7&5) : 1
-------------------------
Note m = 2 so m+1 node is possible in result
*/
combination(vertex, n, 2);
return 0;
}
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
// Java Program
// Print the combinations of given vertices which connect of M edges
// they not contain cycle and its path cost is positive by node
public class Combinations
{
public void findCombination(int[] vertex,
int[] result, int[] visit, int cost,
int count, int n, int edge)
{
if (count - 1 == edge && cost > 0)
{
for (int i = 0; i <= edge; ++i)
{
if (i != 0)
{
System.out.print(" ⤑ ");
}
System.out.print(result[i]);
}
System.out.print(" : " + cost + "\n");
}
if (count >= n || count - 1 >= edge ||
(count >= 2 && cost == 0))
{
// Base case
return;
}
for (int i = 0; i < n; ++i)
{
if (visit[i] == -1)
{
visit[i] = i;
// Collect resultant node
result[count] = vertex[i];
if (count == 0)
{
// Find combinations using recursively
findCombination(vertex, result,
visit, vertex[i],
count + 1, n, edge);
}
else
{
// Find combinations using recursively
findCombination(vertex,
result, visit, vertex[i] & cost,
count + 1, n, edge);
}
visit[i] = -1;
}
}
}
public void combination(int[] vertex, int n, int edge)
{
if (n <= 0 || edge >= n || edge <= 0)
{
return;
}
int[] result = new int[edge + 1];
int[] visit = new int[n];
for (int i = 0; i < n; ++i)
{
visit[i] = -1;
}
// Find combination pair
findCombination(vertex, result, visit, 0, 0, n, edge);
}
public static void main(String args[])
{
Combinations task = new Combinations();
// Graph vertex
// Its must be positive because it indicates index node id.
// Assume that given vertex are distinct.
int[] vertex = {
2 , 16 , 5 , 6 , 7 , 1
};
// Get the number of nodes
int n = vertex.length;
// number of edge
int m = 2;
/*
arr [] = [2, 16, 5, 6, 7, 1]
-----------------------------
2 ⤑ 6 ⤑ 7 (2&6&7) : 2
2 ⤑ 7 ⤑ 6 (2&7&6) : 2
5 ⤑ 6 ⤑ 7 (5&6&7) : 4
5 ⤑ 7 ⤑ 6 (5&7&6) : 4
5 ⤑ 7 ⤑ 1 (5&7&1) : 1
5 ⤑ 1 ⤑ 7 (5&1&7) : 1
6 ⤑ 2 ⤑ 7 (6&2&7) : 2
6 ⤑ 5 ⤑ 7 (6&5&7) : 4
6 ⤑ 7 ⤑ 2 (6&7&2) : 2
6 ⤑ 7 ⤑ 5 (6&7&5) : 4
7 ⤑ 2 ⤑ 6 (7&2&6) : 2
7 ⤑ 5 ⤑ 6 (7&5&6) : 4
7 ⤑ 5 ⤑ 1 (7&5&1) : 1
7 ⤑ 6 ⤑ 2 (7&6&2) : 2
7 ⤑ 6 ⤑ 5 (7&6&5) : 4
7 ⤑ 1 ⤑ 5 (7&1&5) : 1
1 ⤑ 5 ⤑ 7 (1&5&7) : 1
1 ⤑ 7 ⤑ 5 (1&7&5) : 1
-------------------------
Note m = 2 so m+1 node is possible in result
*/
task.combination(vertex, n, 2);
}
}
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
// Include header file
#include <iostream>
using namespace std;
// C++ Program
// Print the combinations of given vertices which connect of M edges
// they not contain cycle and its path cost is positive by node
class Combinations
{
public: void findCombination(int vertex[],
int result[], int visit[], int cost,
int count, int n, int edge)
{
if (count - 1 == edge && cost > 0)
{
for (int i = 0; i <= edge; ++i)
{
if (i != 0)
{
cout << " ⤑ ";
}
cout << result[i];
}
cout << " : " << cost << "\n";
}
if (count >= n || count - 1 >= edge ||
(count >= 2 && cost == 0))
{
// Base case
return;
}
for (int i = 0; i < n; ++i)
{
if (visit[i] == -1)
{
visit[i] = i;
// Collect resultant node
result[count] = vertex[i];
if (count == 0)
{
// Find combinations using recursively
this->findCombination(vertex,
result, visit,
vertex[i], count + 1,
n, edge);
}
else
{
// Find combinations using recursively
this->findCombination(vertex,
result, visit,
vertex[i] &cost,
count + 1, n, edge);
}
visit[i] = -1;
}
}
}
void combination(int vertex[], int n, int edge)
{
if (n <= 0 || edge >= n || edge <= 0)
{
return;
}
int result[edge + 1];
int visit[n];
for (int i = 0; i < n; ++i)
{
visit[i] = -1;
}
// Find combination pair
this->findCombination(vertex, result, visit, 0, 0, n, edge);
}
};
int main()
{
Combinations *task = new Combinations();
// Graph vertex
// Its must be positive because it indicates index node id.
// Assume that given vertex are distinct.
int vertex[] = {
2 , 16 , 5 , 6 , 7 , 1
};
// Get the number of nodes
int n = sizeof(vertex) / sizeof(vertex[0]);
// number of edge
int m = 2;
/*
arr [] = [2, 16, 5, 6, 7, 1]
-----------------------------
2 ⤑ 6 ⤑ 7 (2&6&7) : 2
2 ⤑ 7 ⤑ 6 (2&7&6) : 2
5 ⤑ 6 ⤑ 7 (5&6&7) : 4
5 ⤑ 7 ⤑ 6 (5&7&6) : 4
5 ⤑ 7 ⤑ 1 (5&7&1) : 1
5 ⤑ 1 ⤑ 7 (5&1&7) : 1
6 ⤑ 2 ⤑ 7 (6&2&7) : 2
6 ⤑ 5 ⤑ 7 (6&5&7) : 4
6 ⤑ 7 ⤑ 2 (6&7&2) : 2
6 ⤑ 7 ⤑ 5 (6&7&5) : 4
7 ⤑ 2 ⤑ 6 (7&2&6) : 2
7 ⤑ 5 ⤑ 6 (7&5&6) : 4
7 ⤑ 5 ⤑ 1 (7&5&1) : 1
7 ⤑ 6 ⤑ 2 (7&6&2) : 2
7 ⤑ 6 ⤑ 5 (7&6&5) : 4
7 ⤑ 1 ⤑ 5 (7&1&5) : 1
1 ⤑ 5 ⤑ 7 (1&5&7) : 1
1 ⤑ 7 ⤑ 5 (1&7&5) : 1
-------------------------
Note m = 2 so m+1 node is possible in result
*/
task->combination(vertex, n, 2);
return 0;
}
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
// Include namespace system
using System;
// Csharp Program
// Print the combinations of given vertices which connect of M edges
// they not contain cycle and its path cost is positive by node
public class Combinations
{
public void findCombination(int[] vertex, int[] result,
int[] visit, int cost, int count, int n, int edge)
{
if (count - 1 == edge && cost > 0)
{
for (int i = 0; i <= edge; ++i)
{
if (i != 0)
{
Console.Write(" ⤑ ");
}
Console.Write(result[i]);
}
Console.Write(" : " + cost + "\n");
}
if (count >= n || count - 1 >= edge ||
(count >= 2 && cost == 0))
{
// Base case
return;
}
for (int i = 0; i < n; ++i)
{
if (visit[i] == -1)
{
visit[i] = i;
// Collect resultant node
result[count] = vertex[i];
if (count == 0)
{
// Find combinations using recursively
this.findCombination(vertex,
result, visit,
vertex[i], count + 1,
n, edge);
}
else
{
// Find combinations using recursively
this.findCombination(vertex, result,
visit, vertex[i] & cost,
count + 1, n, edge);
}
visit[i] = -1;
}
}
}
public void combination(int[] vertex, int n, int edge)
{
if (n <= 0 || edge >= n || edge <= 0)
{
return;
}
int[] result = new int[edge + 1];
int[] visit = new int[n];
for (int i = 0; i < n; ++i)
{
visit[i] = -1;
}
// Find combination pair
this.findCombination(vertex, result, visit, 0, 0, n, edge);
}
public static void Main(String[] args)
{
Combinations task = new Combinations();
// Graph vertex
// Its must be positive because it indicates index node id.
// Assume that given vertex are distinct.
int[] vertex = {
2 , 16 , 5 , 6 , 7 , 1
};
// Get the number of nodes
int n = vertex.Length;
// number of edge
int m = 2;
/*
arr [] = [2, 16, 5, 6, 7, 1]
-----------------------------
2 ⤑ 6 ⤑ 7 (2&6&7) : 2
2 ⤑ 7 ⤑ 6 (2&7&6) : 2
5 ⤑ 6 ⤑ 7 (5&6&7) : 4
5 ⤑ 7 ⤑ 6 (5&7&6) : 4
5 ⤑ 7 ⤑ 1 (5&7&1) : 1
5 ⤑ 1 ⤑ 7 (5&1&7) : 1
6 ⤑ 2 ⤑ 7 (6&2&7) : 2
6 ⤑ 5 ⤑ 7 (6&5&7) : 4
6 ⤑ 7 ⤑ 2 (6&7&2) : 2
6 ⤑ 7 ⤑ 5 (6&7&5) : 4
7 ⤑ 2 ⤑ 6 (7&2&6) : 2
7 ⤑ 5 ⤑ 6 (7&5&6) : 4
7 ⤑ 5 ⤑ 1 (7&5&1) : 1
7 ⤑ 6 ⤑ 2 (7&6&2) : 2
7 ⤑ 6 ⤑ 5 (7&6&5) : 4
7 ⤑ 1 ⤑ 5 (7&1&5) : 1
1 ⤑ 5 ⤑ 7 (1&5&7) : 1
1 ⤑ 7 ⤑ 5 (1&7&5) : 1
-------------------------
Note m = 2 so m+1 node is possible in result
*/
task.combination(vertex, n, m);
}
}
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
package main
import "fmt"
// Go Program
// Print the combinations of given vertices which connect of M edges
// they not contain cycle and its path cost is positive by node
type Combinations struct {}
func getCombinations() * Combinations {
var me *Combinations = &Combinations {}
return me
}
func(this Combinations) findCombination(vertex[] int,
result[] int, visit[] int, cost int, count int, n int, edge int) {
if count - 1 == edge && cost > 0 {
for i := 0 ; i <= edge ; i++ {
if i != 0 {
fmt.Print(" ⤑ ")
}
fmt.Print(result[i])
}
fmt.Print(" : ", cost, "\n")
}
if count >= n || count - 1 >= edge || (count >= 2 && cost == 0) {
// Base case
return
}
for i := 0 ; i < n ; i++ {
if visit[i] == -1 {
visit[i] = i
// Collect resultant node
result[count] = vertex[i]
if count == 0 {
// Find combinations using recursively
this.findCombination(vertex, result,
visit, vertex[i], count + 1, n, edge)
} else {
// Find combinations using recursively
this.findCombination(vertex, result,
visit, vertex[i] & cost, count + 1, n, edge)
}
visit[i] = -1
}
}
}
func(this Combinations) combination(vertex[] int, n int, edge int) {
if n <= 0 || edge >= n || edge <= 0 {
return
}
var result = make([] int, edge + 1)
var visit = make([] int, n)
for i := 0 ; i < n ; i++ {
visit[i] = -1
}
// Find combination pair
this.findCombination(vertex, result, visit, 0, 0, n, edge)
}
func main() {
var task * Combinations = getCombinations()
// Graph vertex
// Its must be positive because it indicates index node id.
// Assume that given vertex are distinct.
var vertex = [] int {
2,
16,
5,
6,
7,
1,
}
// Get the number of nodes
var n int = len(vertex)
// number of edge
var m int = 2
/*
arr [] = [2, 16, 5, 6, 7, 1]
-----------------------------
2 ⤑ 6 ⤑ 7 (2&6&7) : 2
2 ⤑ 7 ⤑ 6 (2&7&6) : 2
5 ⤑ 6 ⤑ 7 (5&6&7) : 4
5 ⤑ 7 ⤑ 6 (5&7&6) : 4
5 ⤑ 7 ⤑ 1 (5&7&1) : 1
5 ⤑ 1 ⤑ 7 (5&1&7) : 1
6 ⤑ 2 ⤑ 7 (6&2&7) : 2
6 ⤑ 5 ⤑ 7 (6&5&7) : 4
6 ⤑ 7 ⤑ 2 (6&7&2) : 2
6 ⤑ 7 ⤑ 5 (6&7&5) : 4
7 ⤑ 2 ⤑ 6 (7&2&6) : 2
7 ⤑ 5 ⤑ 6 (7&5&6) : 4
7 ⤑ 5 ⤑ 1 (7&5&1) : 1
7 ⤑ 6 ⤑ 2 (7&6&2) : 2
7 ⤑ 6 ⤑ 5 (7&6&5) : 4
7 ⤑ 1 ⤑ 5 (7&1&5) : 1
1 ⤑ 5 ⤑ 7 (1&5&7) : 1
1 ⤑ 7 ⤑ 5 (1&7&5) : 1
-------------------------
Note m = 2 so m+1 node is possible in result
*/
task.combination(vertex, n, m)
}
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
<?php
// Php Program
// Print the combinations of given vertices which connect of M edges
// they not contain cycle and its path cost is positive by node
class Combinations
{
public function findCombination($vertex, $result,
$visit, $cost,
$count, $n, $edge)
{
if ($count - 1 == $edge && $cost > 0)
{
for ($i = 0; $i <= $edge; ++$i)
{
if ($i != 0)
{
echo(" ⤑ ");
}
echo($result[$i]);
}
echo(" : ".$cost.
"\n");
}
if ($count >= $n || $count - 1 >= $edge ||
($count >= 2 && $cost == 0))
{
// Base case
return;
}
for ($i = 0; $i < $n; ++$i)
{
if ($visit[$i] == -1)
{
$visit[$i] = $i;
// Collect resultant node
$result[$count] = $vertex[$i];
if ($count == 0)
{
// Find combinations using recursively
$this->findCombination($vertex,
$result, $visit,
$vertex[$i], $count + 1,
$n, $edge);
}
else
{
// Find combinations using recursively
$this->findCombination($vertex, $result,
$visit, $vertex[$i] & $cost,
$count + 1, $n, $edge);
}
$visit[$i] = -1;
}
}
}
public function combination($vertex, $n, $edge)
{
if ($n <= 0 || $edge >= $n || $edge <= 0)
{
return;
}
$result = array_fill(0, $edge + 1, 0);
$visit = array_fill(0, $n, 0);
for ($i = 0; $i < $n; ++$i)
{
$visit[$i] = -1;
}
// Find combination pair
$this->findCombination($vertex, $result, $visit,
0, 0, $n, $edge);
}
}
function main()
{
$task = new Combinations();
// Graph vertex
// Its must be positive because it indicates index node id.
// Assume that given vertex are distinct.
$vertex = array(2, 16, 5, 6, 7, 1);
// Get the number of nodes
$n = count($vertex);
// number of edge
$m = 2;
/*
arr [] = [2, 16, 5, 6, 7, 1]
-----------------------------
2 ⤑ 6 ⤑ 7 (2&6&7) : 2
2 ⤑ 7 ⤑ 6 (2&7&6) : 2
5 ⤑ 6 ⤑ 7 (5&6&7) : 4
5 ⤑ 7 ⤑ 6 (5&7&6) : 4
5 ⤑ 7 ⤑ 1 (5&7&1) : 1
5 ⤑ 1 ⤑ 7 (5&1&7) : 1
6 ⤑ 2 ⤑ 7 (6&2&7) : 2
6 ⤑ 5 ⤑ 7 (6&5&7) : 4
6 ⤑ 7 ⤑ 2 (6&7&2) : 2
6 ⤑ 7 ⤑ 5 (6&7&5) : 4
7 ⤑ 2 ⤑ 6 (7&2&6) : 2
7 ⤑ 5 ⤑ 6 (7&5&6) : 4
7 ⤑ 5 ⤑ 1 (7&5&1) : 1
7 ⤑ 6 ⤑ 2 (7&6&2) : 2
7 ⤑ 6 ⤑ 5 (7&6&5) : 4
7 ⤑ 1 ⤑ 5 (7&1&5) : 1
1 ⤑ 5 ⤑ 7 (1&5&7) : 1
1 ⤑ 7 ⤑ 5 (1&7&5) : 1
-------------------------
Note m = 2 so m+1 node is possible in result
*/
$task->combination($vertex, $n, $m);
}
main();
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
// Node JS Program
// Print the combinations of given vertices which connect of M edges
// they not contain cycle and its path cost is positive by node
class Combinations
{
findCombination(vertex, result, visit, cost, count, n, edge)
{
if (count - 1 == edge && cost > 0)
{
for (var i = 0; i <= edge; ++i)
{
if (i != 0)
{
process.stdout.write(" ⤑ ");
}
process.stdout.write("" + result[i]);
}
process.stdout.write(" : " + cost + "\n");
}
if (count >= n || count - 1 >= edge || (count >= 2 && cost == 0))
{
// Base case
return;
}
for (var i = 0; i < n; ++i)
{
if (visit[i] == -1)
{
visit[i] = i;
// Collect resultant node
result[count] = vertex[i];
if (count == 0)
{
// Find combinations using recursively
this.findCombination(vertex, result,
visit, vertex[i],
count + 1, n, edge);
}
else
{
// Find combinations using recursively
this.findCombination(vertex, result,
visit, vertex[i] & cost,
count + 1, n, edge);
}
visit[i] = -1;
}
}
}
combination(vertex, n, edge)
{
if (n <= 0 || edge >= n || edge <= 0)
{
return;
}
var result = Array(edge + 1).fill(0);
var visit = Array(n).fill(0);
for (var i = 0; i < n; ++i)
{
visit[i] = -1;
}
// Find combination pair
this.findCombination(vertex, result, visit, 0, 0, n, edge);
}
}
function main()
{
var task = new Combinations();
// Graph vertex
// Its must be positive because it indicates index node id.
// Assume that given vertex are distinct.
var vertex = [2, 16, 5, 6, 7, 1];
// Get the number of nodes
var n = vertex.length;
// number of edge
var m = 2;
/*
arr [] = [2, 16, 5, 6, 7, 1]
-----------------------------
2 ⤑ 6 ⤑ 7 (2&6&7) : 2
2 ⤑ 7 ⤑ 6 (2&7&6) : 2
5 ⤑ 6 ⤑ 7 (5&6&7) : 4
5 ⤑ 7 ⤑ 6 (5&7&6) : 4
5 ⤑ 7 ⤑ 1 (5&7&1) : 1
5 ⤑ 1 ⤑ 7 (5&1&7) : 1
6 ⤑ 2 ⤑ 7 (6&2&7) : 2
6 ⤑ 5 ⤑ 7 (6&5&7) : 4
6 ⤑ 7 ⤑ 2 (6&7&2) : 2
6 ⤑ 7 ⤑ 5 (6&7&5) : 4
7 ⤑ 2 ⤑ 6 (7&2&6) : 2
7 ⤑ 5 ⤑ 6 (7&5&6) : 4
7 ⤑ 5 ⤑ 1 (7&5&1) : 1
7 ⤑ 6 ⤑ 2 (7&6&2) : 2
7 ⤑ 6 ⤑ 5 (7&6&5) : 4
7 ⤑ 1 ⤑ 5 (7&1&5) : 1
1 ⤑ 5 ⤑ 7 (1&5&7) : 1
1 ⤑ 7 ⤑ 5 (1&7&5) : 1
-------------------------
Note m = 2 so m+1 node is possible in result
*/
task.combination(vertex, n, m);
}
main();
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
# Python 3 Program
# Print the combinations of given vertices which connect of M edges
# they not contain cycle and its path cost is positive by node
class Combinations :
def findCombination(self, vertex, result,
visit, cost, count, n, edge) :
if (count - 1 == edge and cost > 0) :
i = 0
while (i <= edge) :
if (i != 0) :
print(" ⤑ ", end = "")
print(result[i], end = "")
i += 1
print(" : ", cost )
if (count >= n or count - 1 >= edge or (count >= 2 and cost == 0)) :
# Base case
return
i = 0
while (i < n) :
if (visit[i] == -1) :
visit[i] = i
# Collect resultant node
result[count] = vertex[i]
if (count == 0) :
# Find combinations using recursively
self.findCombination(vertex, result,
visit, vertex[i],
count + 1, n, edge)
else :
# Find combinations using recursively
self.findCombination(vertex, result,
visit, vertex[i] & cost,
count + 1, n, edge)
visit[i] = -1
i += 1
def combination(self, vertex, n, edge) :
if (n <= 0 or edge >= n or edge <= 0) :
return
result = [0] * (edge + 1)
visit = [0] * (n)
i = 0
while (i < n) :
visit[i] = -1
i += 1
# Find combination pair
self.findCombination(vertex, result, visit, 0, 0, n, edge)
def main() :
task = Combinations()
# Graph vertex
# Its must be positive because it indicates index node id.
# Assume that given vertex are distinct.
vertex = [2, 16, 5, 6, 7, 1]
# Get the number of nodes
n = len(vertex)
# number of edge
m = 2
# arr [] = [2, 16, 5, 6, 7, 1]
# -----------------------------
# 2 ⤑ 6 ⤑ 7 (2&6&7) : 2
# 2 ⤑ 7 ⤑ 6 (2&7&6) : 2
# 5 ⤑ 6 ⤑ 7 (5&6&7) : 4
# 5 ⤑ 7 ⤑ 6 (5&7&6) : 4
# 5 ⤑ 7 ⤑ 1 (5&7&1) : 1
# 5 ⤑ 1 ⤑ 7 (5&1&7) : 1
# 6 ⤑ 2 ⤑ 7 (6&2&7) : 2
# 6 ⤑ 5 ⤑ 7 (6&5&7) : 4
# 6 ⤑ 7 ⤑ 2 (6&7&2) : 2
# 6 ⤑ 7 ⤑ 5 (6&7&5) : 4
# 7 ⤑ 2 ⤑ 6 (7&2&6) : 2
# 7 ⤑ 5 ⤑ 6 (7&5&6) : 4
# 7 ⤑ 5 ⤑ 1 (7&5&1) : 1
# 7 ⤑ 6 ⤑ 2 (7&6&2) : 2
# 7 ⤑ 6 ⤑ 5 (7&6&5) : 4
# 7 ⤑ 1 ⤑ 5 (7&1&5) : 1
# 1 ⤑ 5 ⤑ 7 (1&5&7) : 1
# 1 ⤑ 7 ⤑ 5 (1&7&5) : 1
# -------------------------
# Note m = 2 so m+1 node is possible in result
task.combination(vertex, n, m)
if __name__ == "__main__": main()
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
# Ruby Program
# Print the combinations of given vertices which connect of M edges
# they not contain cycle and its path cost is positive by node
class Combinations
def findCombination(vertex, result, visit,
cost, count, n, edge)
if (count - 1 == edge && cost > 0)
i = 0
while (i <= edge)
if (i != 0)
print(" ⤑ ")
end
print(result[i])
i += 1
end
print(" : ", cost ,"\n")
end
if (count >= n || count - 1 >= edge ||
(count >= 2 && cost == 0))
# Base case
return
end
i = 0
while (i < n)
if (visit[i] == -1)
visit[i] = i
# Collect resultant node
result[count] = vertex[i]
if (count == 0)
# Find combinations using recursively
self.findCombination(vertex, result,
visit, vertex[i],
count + 1, n, edge)
else
# Find combinations using recursively
self.findCombination(vertex, result,
visit, vertex[i] & cost,
count + 1, n, edge)
end
visit[i] = -1
end
i += 1
end
end
def combination(vertex, n, edge)
if (n <= 0 || edge >= n || edge <= 0)
return
end
result = Array.new(edge + 1) {0}
visit = Array.new(n) {0}
i = 0
while (i < n)
visit[i] = -1
i += 1
end
# Find combination pair
self.findCombination(vertex, result, visit, 0, 0, n, edge)
end
end
def main()
task = Combinations.new()
# Graph vertex
# Its must be positive because it indicates index node id.
# Assume that given vertex are distinct.
vertex = [2, 16, 5, 6, 7, 1]
# Get the number of nodes
n = vertex.length
# number of edge
m = 2
# arr [] = [2, 16, 5, 6, 7, 1]
# -----------------------------
# 2 ⤑ 6 ⤑ 7 (2&6&7) : 2
# 2 ⤑ 7 ⤑ 6 (2&7&6) : 2
# 5 ⤑ 6 ⤑ 7 (5&6&7) : 4
# 5 ⤑ 7 ⤑ 6 (5&7&6) : 4
# 5 ⤑ 7 ⤑ 1 (5&7&1) : 1
# 5 ⤑ 1 ⤑ 7 (5&1&7) : 1
# 6 ⤑ 2 ⤑ 7 (6&2&7) : 2
# 6 ⤑ 5 ⤑ 7 (6&5&7) : 4
# 6 ⤑ 7 ⤑ 2 (6&7&2) : 2
# 6 ⤑ 7 ⤑ 5 (6&7&5) : 4
# 7 ⤑ 2 ⤑ 6 (7&2&6) : 2
# 7 ⤑ 5 ⤑ 6 (7&5&6) : 4
# 7 ⤑ 5 ⤑ 1 (7&5&1) : 1
# 7 ⤑ 6 ⤑ 2 (7&6&2) : 2
# 7 ⤑ 6 ⤑ 5 (7&6&5) : 4
# 7 ⤑ 1 ⤑ 5 (7&1&5) : 1
# 1 ⤑ 5 ⤑ 7 (1&5&7) : 1
# 1 ⤑ 7 ⤑ 5 (1&7&5) : 1
# -------------------------
# Note m = 2 so m+1 node is possible in result
task.combination(vertex, n, m)
end
main()
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
// Scala Program
// Print the combinations of given vertices which connect of M edges
// they not contain cycle and its path cost is positive by node
class Combinations()
{
def findCombination(vertex: Array[Int],
result: Array[Int], visit: Array[Int],
cost: Int, count: Int, n: Int, edge: Int): Unit = {
if (count - 1 == edge && cost > 0)
{
var i: Int = 0;
while (i <= edge)
{
if (i != 0)
{
print(" ⤑ ");
}
print(result(i));
i += 1;
}
print(" : " + cost + "\n");
}
if (count >= n || count - 1 >= edge ||
(count >= 2 && cost == 0))
{
// Base case
return;
}
var i: Int = 0;
while (i < n)
{
if (visit(i) == -1)
{
visit(i) = i;
// Collect resultant node
result(count) = vertex(i);
if (count == 0)
{
// Find combinations using recursively
findCombination(vertex, result,
visit, vertex(i), count + 1,
n, edge);
}
else
{
// Find combinations using recursively
findCombination(vertex, result,
visit, vertex(i) & cost,
count + 1, n, edge);
}
visit(i) = -1;
}
i += 1;
}
}
def combination(vertex: Array[Int], n: Int, edge: Int): Unit = {
if (n <= 0 || edge >= n || edge <= 0)
{
return;
}
var result: Array[Int] = Array.fill[Int](edge + 1)(0);
var visit: Array[Int] = Array.fill[Int](n)(0);
var i: Int = 0;
while (i < n)
{
visit(i) = -1;
i += 1;
}
// Find combination pair
findCombination(vertex, result, visit, 0, 0, n, edge);
}
}
object Main
{
def main(args: Array[String]): Unit = {
var task: Combinations = new Combinations();
// Graph vertex
// Its must be positive because it indicates index node id.
// Assume that given vertex are distinct.
var vertex: Array[Int] = Array(2, 16, 5, 6, 7, 1);
// Get the number of nodes
var n: Int = vertex.length;
// number of edge
var m: Int = 2;
/*
arr [] = [2, 16, 5, 6, 7, 1]
-----------------------------
2 ⤑ 6 ⤑ 7 (2&6&7) : 2
2 ⤑ 7 ⤑ 6 (2&7&6) : 2
5 ⤑ 6 ⤑ 7 (5&6&7) : 4
5 ⤑ 7 ⤑ 6 (5&7&6) : 4
5 ⤑ 7 ⤑ 1 (5&7&1) : 1
5 ⤑ 1 ⤑ 7 (5&1&7) : 1
6 ⤑ 2 ⤑ 7 (6&2&7) : 2
6 ⤑ 5 ⤑ 7 (6&5&7) : 4
6 ⤑ 7 ⤑ 2 (6&7&2) : 2
6 ⤑ 7 ⤑ 5 (6&7&5) : 4
7 ⤑ 2 ⤑ 6 (7&2&6) : 2
7 ⤑ 5 ⤑ 6 (7&5&6) : 4
7 ⤑ 5 ⤑ 1 (7&5&1) : 1
7 ⤑ 6 ⤑ 2 (7&6&2) : 2
7 ⤑ 6 ⤑ 5 (7&6&5) : 4
7 ⤑ 1 ⤑ 5 (7&1&5) : 1
1 ⤑ 5 ⤑ 7 (1&5&7) : 1
1 ⤑ 7 ⤑ 5 (1&7&5) : 1
-------------------------
Note m = 2 so m+1 node is possible in result
*/
task.combination(vertex, n, m);
}
}
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
import Foundation;
// Swift 4 Program
// Print the combinations of given vertices which connect of M edges
// they not contain cycle and its path cost is positive by node
class Combinations
{
func findCombination(_ vertex: [Int],
_ result: inout[Int], _ visit: inout[Int], _ cost: Int,
_ count: Int, _ n: Int, _ edge: Int)
{
if (count - 1 == edge && cost > 0)
{
var i: Int = 0;
while (i <= edge)
{
if (i != 0)
{
print(" ⤑ ", terminator: "");
}
print(result[i], terminator: "");
i += 1;
}
print(" : ", cost );
}
if (count >= n || count - 1 >= edge ||
(count >= 2 && cost == 0))
{
// Base case
return;
}
var i: Int = 0;
while (i < n)
{
if (visit[i] == -1)
{
visit[i] = i;
// Collect resultant node
result[count] = vertex[i];
if (count == 0)
{
// Find combinations using recursively
self.findCombination(vertex, &result, &visit,
vertex[i], count + 1, n, edge);
}
else
{
// Find combinations using recursively
self.findCombination(vertex, &result,
&visit, vertex[i] & cost,
count + 1, n, edge);
}
visit[i] = -1;
}
i += 1;
}
}
func combination(_ vertex: [Int], _ n: Int, _ edge: Int)
{
if (n <= 0 || edge >= n || edge <= 0)
{
return;
}
var result: [Int] = Array(repeating: 0, count: edge + 1);
var visit: [Int] = Array(repeating: 0, count: n);
var i: Int = 0;
while (i < n)
{
visit[i] = -1;
i += 1;
}
// Find combination pair
self.findCombination(vertex, &result, &visit, 0, 0, n, edge);
}
}
func main()
{
let task: Combinations = Combinations();
// Graph vertex
// Its must be positive because it indicates index node id.
// Assume that given vertex are distinct.
let vertex: [Int] = [2, 16, 5, 6, 7, 1];
// Get the number of nodes
let n: Int = vertex.count;
// number of edge
let m: Int = 2;
/*
arr [] = [2, 16, 5, 6, 7, 1]
-----------------------------
2 ⤑ 6 ⤑ 7 (2&6&7) : 2
2 ⤑ 7 ⤑ 6 (2&7&6) : 2
5 ⤑ 6 ⤑ 7 (5&6&7) : 4
5 ⤑ 7 ⤑ 6 (5&7&6) : 4
5 ⤑ 7 ⤑ 1 (5&7&1) : 1
5 ⤑ 1 ⤑ 7 (5&1&7) : 1
6 ⤑ 2 ⤑ 7 (6&2&7) : 2
6 ⤑ 5 ⤑ 7 (6&5&7) : 4
6 ⤑ 7 ⤑ 2 (6&7&2) : 2
6 ⤑ 7 ⤑ 5 (6&7&5) : 4
7 ⤑ 2 ⤑ 6 (7&2&6) : 2
7 ⤑ 5 ⤑ 6 (7&5&6) : 4
7 ⤑ 5 ⤑ 1 (7&5&1) : 1
7 ⤑ 6 ⤑ 2 (7&6&2) : 2
7 ⤑ 6 ⤑ 5 (7&6&5) : 4
7 ⤑ 1 ⤑ 5 (7&1&5) : 1
1 ⤑ 5 ⤑ 7 (1&5&7) : 1
1 ⤑ 7 ⤑ 5 (1&7&5) : 1
-------------------------
Note m = 2 so m+1 node is possible in result
*/
task.combination(vertex, n, m);
}
main();
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
// Kotlin Program
// Print the combinations of given vertices which connect of M edges
// they not contain cycle and its path cost is positive by node
class Combinations
{
fun findCombination(vertex: Array < Int > ,
result: Array < Int > ,
visit: Array < Int > ,
cost: Int, count: Int,
n: Int, edge: Int): Unit
{
if (count - 1 == edge && cost > 0)
{
var i: Int = 0;
while (i <= edge)
{
if (i != 0)
{
print(" ⤑ ");
}
print(result[i]);
i += 1;
}
print(" : " + cost + "\n");
}
if (count >= n || count - 1 >= edge ||
(count >= 2 && cost == 0))
{
// Base case
return;
}
var i: Int = 0;
while (i < n)
{
if (visit[i] == -1)
{
visit[i] = i;
// Collect resultant node
result[count] = vertex[i];
if (count == 0)
{
// Find combinations using recursively
this.findCombination(vertex,
result, visit, vertex[i],
count + 1, n, edge);
}
else
{
// Find combinations using recursively
this.findCombination(vertex, result,
visit, vertex[i] and cost,
count + 1, n, edge);
}
visit[i] = -1;
}
i += 1;
}
}
fun combination(vertex: Array < Int > , n: Int, edge: Int): Unit
{
if (n <= 0 || edge >= n || edge <= 0)
{
return;
}
val result: Array < Int > = Array(edge + 1)
{
0
};
val visit: Array < Int > = Array(n)
{
0
};
var i: Int = 0;
while (i < n)
{
visit[i] = -1;
i += 1;
}
// Find combination pair
this.findCombination(vertex, result, visit, 0, 0, n, edge);
}
}
fun main(args: Array < String > ): Unit
{
val task: Combinations = Combinations();
// Graph vertex
// Its must be positive because it indicates index node id.
// Assume that given vertex are distinct.
val vertex: Array < Int > = arrayOf(2, 16, 5, 6, 7, 1);
// Get the number of nodes
val n: Int = vertex.count();
// number of edge
val m: Int = 2;
/*
arr [] = [2, 16, 5, 6, 7, 1]
-----------------------------
2 ⤑ 6 ⤑ 7 (2&6&7) : 2
2 ⤑ 7 ⤑ 6 (2&7&6) : 2
5 ⤑ 6 ⤑ 7 (5&6&7) : 4
5 ⤑ 7 ⤑ 6 (5&7&6) : 4
5 ⤑ 7 ⤑ 1 (5&7&1) : 1
5 ⤑ 1 ⤑ 7 (5&1&7) : 1
6 ⤑ 2 ⤑ 7 (6&2&7) : 2
6 ⤑ 5 ⤑ 7 (6&5&7) : 4
6 ⤑ 7 ⤑ 2 (6&7&2) : 2
6 ⤑ 7 ⤑ 5 (6&7&5) : 4
7 ⤑ 2 ⤑ 6 (7&2&6) : 2
7 ⤑ 5 ⤑ 6 (7&5&6) : 4
7 ⤑ 5 ⤑ 1 (7&5&1) : 1
7 ⤑ 6 ⤑ 2 (7&6&2) : 2
7 ⤑ 6 ⤑ 5 (7&6&5) : 4
7 ⤑ 1 ⤑ 5 (7&1&5) : 1
1 ⤑ 5 ⤑ 7 (1&5&7) : 1
1 ⤑ 7 ⤑ 5 (1&7&5) : 1
-------------------------
Note m = 2 so m+1 node is possible in result
*/
task.combination(vertex, n, m);
}
Output
2 ⤑ 6 ⤑ 7 : 2
2 ⤑ 7 ⤑ 6 : 2
5 ⤑ 6 ⤑ 7 : 4
5 ⤑ 7 ⤑ 6 : 4
5 ⤑ 7 ⤑ 1 : 1
5 ⤑ 1 ⤑ 7 : 1
6 ⤑ 2 ⤑ 7 : 2
6 ⤑ 5 ⤑ 7 : 4
6 ⤑ 7 ⤑ 2 : 2
6 ⤑ 7 ⤑ 5 : 4
7 ⤑ 2 ⤑ 6 : 2
7 ⤑ 5 ⤑ 6 : 4
7 ⤑ 5 ⤑ 1 : 1
7 ⤑ 6 ⤑ 2 : 2
7 ⤑ 6 ⤑ 5 : 4
7 ⤑ 1 ⤑ 5 : 1
1 ⤑ 5 ⤑ 7 : 1
1 ⤑ 7 ⤑ 5 : 1
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment