Skip to main content

Permutation coefficient program

The permutation coefficient, also known as a permutation or factorial coefficient, is a mathematical concept used to count the number of ways that a set of distinct objects can be arranged in a specific order. It is denoted by the symbol "P" and is calculated by multiplying the number of objects being arranged by the number of objects that can fill the next position, and so on, until all positions have been filled.

The formula for the permutation coefficient is:

P(n, r) = n! / (n - r)!

where "n" is the total number of objects and "r" is the number of objects being arranged. The exclamation mark represents the factorial function, which means multiplying a sequence of descending positive integers.

For example, if you have 4 distinct objects (A, B, C, and D) and you want to arrange them in a line of 3, the permutation coefficient would be:

P(4, 3) = 4! / (4-3)! = 4 x 3 x 2 = 24

This means that there are 24 possible ways to arrange the 4 objects in a line of 3, such as ABC, ABD, BAC, BDA, CAD, etc.

Code Solution

/*
    C program for
    Permutation coefficient program
*/
#include <stdio.h>

void permutationCoefficient(int n, int k)
{
	// Set initial value
	int p = 1;
	for (int i = n; i >= (n - k + 1); --i)
	{
		p = p *i;
	}
	// Display calculated results
	printf(" ( n = %d, k = %d ) : %d \n", n, k, p);
}
int main(int argc, char
	const *argv[])
{
	// Test samples
	permutationCoefficient(7, 3);
	permutationCoefficient(4, 2);
	return 0;
}

Output

 ( n = 7, k = 3 ) : 210
 ( n = 4, k = 2 ) : 12
/*
    Java Program for
    Permutation coefficient program
*/
public class Coefficient
{
	public void permutationCoefficient(int n, int k)
	{
		// Set initial value
		int p = 1;
		for (int i = n; i >= (n - k + 1); --i)
		{
			p = p * i;
		}
		// Display calculated results
		System.out.print(" ( n = " + n + ", k = " + k + " ) : " + p + " \n");
	}
	public static void main(String[] args)
	{
		Coefficient task = new Coefficient();
		// Test samples
		task.permutationCoefficient(7, 3);
		task.permutationCoefficient(4, 2);
	}
}

Output

 ( n = 7, k = 3 ) : 210
 ( n = 4, k = 2 ) : 12
// Include header file
#include <iostream>
using namespace std;
/*
    C++ Program for
    Permutation coefficient program
*/
class Coefficient
{
	public: void permutationCoefficient(int n, int k)
	{
		// Set initial value
		int p = 1;
		for (int i = n; i >= (n - k + 1); --i)
		{
			p = p *i;
		}
		// Display calculated results
		cout << " ( n = " << n << ", k = " << k << " ) : " << p << " \n";
	}
};
int main()
{
	Coefficient *task = new Coefficient();
	// Test samples
	task->permutationCoefficient(7, 3);
	task->permutationCoefficient(4, 2);
	return 0;
}

Output

 ( n = 7, k = 3 ) : 210
 ( n = 4, k = 2 ) : 12
// Include namespace system
using System;
/*
    Csharp Program for
    Permutation coefficient program
*/
public class Coefficient
{
	public void permutationCoefficient(int n, int k)
	{
		// Set initial value
		int p = 1;
		for (int i = n; i >= (n - k + 1); --i)
		{
			p = p * i;
		}
		// Display calculated results
		Console.Write(" ( n = " + n + ", k = " + k + " ) : " + p + " \n");
	}
	public static void Main(String[] args)
	{
		Coefficient task = new Coefficient();
		// Test samples
		task.permutationCoefficient(7, 3);
		task.permutationCoefficient(4, 2);
	}
}

Output

 ( n = 7, k = 3 ) : 210
 ( n = 4, k = 2 ) : 12
package main
import "fmt"
/*
    Go Program for
    Permutation coefficient program
*/

func permutationCoefficient(n, k int) {
	// Set initial value
	var p int = 1
	for i := n ; i >= (n - k + 1) ; i-- {
		p = p * i
	}
	// Display calculated results
	fmt.Print(" ( n = ", n, ", k = ", k, " ) : ", p, " \n")
}
func main() {

	// Test samples
	permutationCoefficient(7, 3)
	permutationCoefficient(4, 2)
}

Output

 ( n = 7, k = 3 ) : 210
 ( n = 4, k = 2 ) : 12
<?php
/*
    Php Program for
    Permutation coefficient program
*/
class Coefficient
{
	public	function permutationCoefficient($n, $k)
	{
		// Set initial value
		$p = 1;
		for ($i = $n; $i >= ($n - $k + 1); --$i)
		{
			$p = $p * $i;
		}
		// Display calculated results
		echo(" ( n = ".$n.", k = ".$k." ) : ".$p." \n");
	}
}

function main()
{
	$task = new Coefficient();
	// Test samples
	$task->permutationCoefficient(7, 3);
	$task->permutationCoefficient(4, 2);
}
main();

Output

 ( n = 7, k = 3 ) : 210
 ( n = 4, k = 2 ) : 12
/*
    Node JS Program for
    Permutation coefficient program
*/
class Coefficient
{
	permutationCoefficient(n, k)
	{
		// Set initial value
		var p = 1;
		for (var i = n; i >= (n - k + 1); --i)
		{
			p = p * i;
		}
		// Display calculated results
		process.stdout.write(" ( n = " + n + 
                             ", k = " + k + " ) : " + p + " \n");
	}
}

function main()
{
	var task = new Coefficient();
	// Test samples
	task.permutationCoefficient(7, 3);
	task.permutationCoefficient(4, 2);
}
main();

Output

 ( n = 7, k = 3 ) : 210
 ( n = 4, k = 2 ) : 12
#    Python 3 Program for
#    Permutation coefficient program
class Coefficient :
	def permutationCoefficient(self, n, k) :
		#  Set initial value
		p = 1
		i = n
		while (i >= (n - k + 1)) :
			p = p * i
			i -= 1
		
		#  Display calculated results
		print(" ( n = ", n ,", k = ", k ," ) : ", p,sep="" )
	

def main() :
	task = Coefficient()
	#  Test samples
	task.permutationCoefficient(7, 3)
	task.permutationCoefficient(4, 2)

if __name__ == "__main__": main()

Output

 ( n = 7, k = 3 ) : 210
 ( n = 4, k = 2 ) : 12
#    Ruby Program for
#    Permutation coefficient program
class Coefficient 
	def permutationCoefficient(n, k) 
		#  Set initial value
		p = 1
		i = n
		while (i >= (n - k + 1)) 
			p = p * i
			i -= 1
		end

		#  Display calculated results
		print(" ( n = ", n ,", k = ", k ," ) : ", p ," \n")
	end

end

def main() 
	task = Coefficient.new()
	#  Test samples
	task.permutationCoefficient(7, 3)
	task.permutationCoefficient(4, 2)
end

main()

Output

 ( n = 7, k = 3 ) : 210 
 ( n = 4, k = 2 ) : 12 
/*
    Scala Program for
    Permutation coefficient program
*/
class Coefficient()
{
	def permutationCoefficient(n: Int, k: Int): Unit = {
		// Set initial value
		var p: Int = 1;
		var i: Int = n;
		while (i >= (n - k + 1))
		{
			p = p * i;
			i -= 1;
		}
		// Display calculated results
		print(" ( n = " + n + ", k = " + k + " ) : " + p + " \n");
	}
}
object Main
{
	def main(args: Array[String]): Unit = {
		var task: Coefficient = new Coefficient();
		// Test samples
		task.permutationCoefficient(7, 3);
		task.permutationCoefficient(4, 2);
	}
}

Output

 ( n = 7, k = 3 ) : 210
 ( n = 4, k = 2 ) : 12
/*
    Swift 4 Program for
    Permutation coefficient program
*/
class Coefficient
{
	func permutationCoefficient(_ n: Int, _ k: Int)
	{
		// Set initial value
		var p: Int = 1;
		var i: Int = n;
		while (i >= (n - k + 1))
		{
			p = p * i;
			i -= 1;
		}
		// Display calculated results
		print(" ( n = ", n ,", k = ", k ," ) : ", p );
	}
}
func main()
{
	let task: Coefficient = Coefficient();
	// Test samples
	task.permutationCoefficient(7, 3);
	task.permutationCoefficient(4, 2);
}
main();

Output

 ( n =  7 , k =  3  ) :  210
 ( n =  4 , k =  2  ) :  12
/*
    Kotlin Program for
    Permutation coefficient program
*/
class Coefficient
{
	fun permutationCoefficient(n: Int, k: Int): Unit
	{
		// Set initial value
		var p: Int = 1;
		var i: Int = n;
		while (i >= (n - k + 1))
		{
			p = p * i;
			i -= 1;
		}
		// Display calculated results
		print(" ( n = " + n + ", k = " + k + " ) : " + p + " \n");
	}
}
fun main(args: Array < String > ): Unit
{
	val task: Coefficient = Coefficient();
	// Test samples
	task.permutationCoefficient(7, 3);
	task.permutationCoefficient(4, 2);
}

Output

 ( n = 7, k = 3 ) : 210
 ( n = 4, k = 2 ) : 12




Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

New Comment