Pentagonal pyramidal number
The Pentagonal Pyramidal Number is a sequence of numbers that represents the number of dots required to form a pyramid with pentagonal layers. In this problem, we are given the task to generate the first 'k' pentagonal pyramidal numbers and display them. The formula to calculate the nth pentagonal pyramidal number is (n^2 * (n + 1)) / 2.
Problem Statement & Example
We need to write a program in C to generate the first 'k' pentagonal pyramidal numbers and display them. For example, if 'k' is 10, then the program should generate and display the first 10 pentagonal pyramidal numbers: 1, 6, 18, 40, 75, 126, 196, 288, 405, 550.
Pseudocode & Algorithm
The algorithm for generating 'k' pentagonal pyramidal numbers is quite straightforward. We need a loop that iterates from 1 to 'k', and for each value of 'n', we apply the formula to calculate the nth pentagonal pyramidal number. Let's represent the algorithm in pseudocode:
// Function to generate and display the first 'k' pentagonal pyramidal numbers
function pentagonalPyramidalNo(k):
// Loop from n = 1 to n = k
for n = 1 to k do:
// Calculate the nth pentagonal pyramidal number using the formula
result = (n^2 * (n + 1)) / 2
// Display the calculated result
print result
// Main function
function main():
// Initialize 'k' as 10 (can be any desired value)
k = 10
// Call the function to generate and display the first 'k' pentagonal pyramidal numbers
pentagonalPyramidalNo(k)
// Call the main function to start the program
main()
Program Solution
// C Program for
// Pentagonal pyramidal number
#include <stdio.h>
void pentagonalPyramidalNo(int k)
{
// Print all initial k pentagonal pyramidal number
for (int n = 1; n <= k; ++n)
{
// Formula
// n²(n+1)
// —————————
// 2
// Calculate nth pentagonal pyramidal number
int result = ((n *n) *(n + 1)) / 2;
// Display calculated result
printf(" %d", result);
}
}
int main()
{
// Pentagonal pyramidal number are
// —————————————————————————————————————————————
// 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
// 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
// 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
// 11368, 12615, 13950, 15376, 16896, 18513,
// 20230, 22050, 23976 etc.
// k = 10
pentagonalPyramidalNo(10);
return 0;
}
Output
1 6 18 40 75 126 196 288 405 550
// Java program for
// Pentagonal pyramidal number
public class PentagonalNumber
{
public void pentagonalPyramidalNo(int k)
{
// Print all initial k pentagonal pyramidal number
for (int n = 1; n <= k; ++n)
{
// Formula
// n²(n+1)
// —————————
// 2
// Calculate nth pentagonal pyramidal number
int result = ((n * n) * (n + 1)) / 2;
// Display calculated result
System.out.print(" " + result);
}
}
public static void main(String[] args)
{
PentagonalNumber task = new PentagonalNumber();
// Pentagonal pyramidal number are
// —————————————————————————————————————————————
// 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
// 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
// 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
// 11368, 12615, 13950, 15376, 16896, 18513,
// 20230, 22050, 23976 etc.
// k = 10
task.pentagonalPyramidalNo(10);
}
}
Output
1 6 18 40 75 126 196 288 405 550
// Include header file
#include <iostream>
using namespace std;
// C++ program for
// Pentagonal pyramidal number
class PentagonalNumber
{
public: void pentagonalPyramidalNo(int k)
{
// Print all initial k pentagonal pyramidal number
for (int n = 1; n <= k; ++n)
{
// Formula
// n²(n+1)
// —————————
// 2
// Calculate nth pentagonal pyramidal number
int result = ((n *n) *(n + 1)) / 2;
// Display calculated result
cout << " " << result;
}
}
};
int main()
{
PentagonalNumber *task = new PentagonalNumber();
// Pentagonal pyramidal number are
// —————————————————————————————————————————————
// 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
// 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
// 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
// 11368, 12615, 13950, 15376, 16896, 18513,
// 20230, 22050, 23976 etc.
// k = 10
task->pentagonalPyramidalNo(10);
return 0;
}
Output
1 6 18 40 75 126 196 288 405 550
// Include namespace system
using System;
// Csharp program for
// Pentagonal pyramidal number
public class PentagonalNumber
{
public void pentagonalPyramidalNo(int k)
{
// Print all initial k pentagonal pyramidal number
for (int n = 1; n <= k; ++n)
{
// Formula
// n²(n+1)
// —————————
// 2
// Calculate nth pentagonal pyramidal number
int result = ((n * n) * (n + 1)) / 2;
// Display calculated result
Console.Write(" " + result);
}
}
public static void Main(String[] args)
{
PentagonalNumber task = new PentagonalNumber();
// Pentagonal pyramidal number are
// —————————————————————————————————————————————
// 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
// 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
// 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
// 11368, 12615, 13950, 15376, 16896, 18513,
// 20230, 22050, 23976 etc.
// k = 10
task.pentagonalPyramidalNo(10);
}
}
Output
1 6 18 40 75 126 196 288 405 550
package main
import "fmt"
// Go program for
// Pentagonal pyramidal number
func pentagonalPyramidalNo(k int) {
// Print all initial k pentagonal pyramidal number
for n := 1 ; n <= k ; n++ {
// Formula
// n²(n+1)
// —————————
// 2
// Calculate nth pentagonal pyramidal number
var result int = ((n * n) * (n + 1)) / 2
// Display calculated result
fmt.Print(" ", result)
}
}
func main() {
// Pentagonal pyramidal number are
// —————————————————————————————————————————————
// 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
// 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
// 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
// 11368, 12615, 13950, 15376, 16896, 18513,
// 20230, 22050, 23976 etc.
// k = 10
pentagonalPyramidalNo(10)
}
Output
1 6 18 40 75 126 196 288 405 550
<?php
// Php program for
// Pentagonal pyramidal number
class PentagonalNumber
{
public function pentagonalPyramidalNo($k)
{
// Print all initial k pentagonal pyramidal number
for ($n = 1; $n <= $k; ++$n)
{
// Formula
// n²(n+1)
// —————————
// 2
// Calculate nth pentagonal pyramidal number
$result = (int)((($n * $n) * ($n + 1)) / 2);
// Display calculated result
echo(" ".$result);
}
}
}
function main()
{
$task = new PentagonalNumber();
// Pentagonal pyramidal number are
// —————————————————————————————————————————————
// 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
// 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
// 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
// 11368, 12615, 13950, 15376, 16896, 18513,
// 20230, 22050, 23976 etc.
// k = 10
$task->pentagonalPyramidalNo(10);
}
main();
Output
1 6 18 40 75 126 196 288 405 550
// Node JS program for
// Pentagonal pyramidal number
class PentagonalNumber
{
pentagonalPyramidalNo(k)
{
// Print all initial k pentagonal pyramidal number
for (var n = 1; n <= k; ++n)
{
// Formula
// n²(n+1)
// ———————
// 2
// Calculate nth pentagonal pyramidal number
var result = parseInt(((n * n) * (n + 1)) / 2);
// Display calculated result
process.stdout.write(" " + result);
}
}
}
function main()
{
var task = new PentagonalNumber();
// Pentagonal pyramidal number are
// —————————————————————————————————————————————
// 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
// 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
// 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
// 11368, 12615, 13950, 15376, 16896, 18513,
// 20230, 22050, 23976 etc.
// k = 10
task.pentagonalPyramidalNo(10);
}
main();
Output
1 6 18 40 75 126 196 288 405 550
# Python 3 program for
# Pentagonal pyramidal number
class PentagonalNumber :
def pentagonalPyramidalNo(self, k) :
n = 1
# Print all initial k pentagonal pyramidal number
while (n <= k) :
# Formula
# n²(n+1)
# —————————
# 2
# Calculate nth pentagonal pyramidal number
result = int(((n * n) * (n + 1)) / 2)
# Display calculated result
print(" ", result, end = "")
n += 1
def main() :
task = PentagonalNumber()
# Pentagonal pyramidal number are
# —————————————————————————————————————————————
# 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
# 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
# 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
# 11368, 12615, 13950, 15376, 16896, 18513,
# 20230, 22050, 23976 etc.
# k = 10
task.pentagonalPyramidalNo(10)
if __name__ == "__main__": main()
Output
1 6 18 40 75 126 196 288 405 550
# Ruby program for
# Pentagonal pyramidal number
class PentagonalNumber
def pentagonalPyramidalNo(k)
n = 1
# Print all initial k pentagonal pyramidal number
while (n <= k)
# Formula
# n²(n+1)
# —————————
# 2
# Calculate nth pentagonal pyramidal number
result = ((n * n) * (n + 1)) / 2
# Display calculated result
print(" ", result)
n += 1
end
end
end
def main()
task = PentagonalNumber.new()
# Pentagonal pyramidal number are
# —————————————————————————————————————————————
# 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
# 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
# 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
# 11368, 12615, 13950, 15376, 16896, 18513,
# 20230, 22050, 23976 etc.
# k = 10
task.pentagonalPyramidalNo(10)
end
main()
Output
1 6 18 40 75 126 196 288 405 550
// Scala program for
// Pentagonal pyramidal number
class PentagonalNumber()
{
def pentagonalPyramidalNo(k: Int): Unit = {
var n: Int = 1;
// Print all initial k pentagonal pyramidal number
while (n <= k)
{
// Formula
// n²(n+1)
// —————————
// 2
// Calculate nth pentagonal pyramidal number
var result: Int = ((n * n) * (n + 1)) / 2;
// Display calculated result
print(" " + result);
n += 1;
}
}
}
object Main
{
def main(args: Array[String]): Unit = {
var task: PentagonalNumber = new PentagonalNumber();
// Pentagonal pyramidal number are
// —————————————————————————————————————————————
// 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
// 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
// 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
// 11368, 12615, 13950, 15376, 16896, 18513,
// 20230, 22050, 23976 etc.
// k = 10
task.pentagonalPyramidalNo(10);
}
}
Output
1 6 18 40 75 126 196 288 405 550
// Swift 4 program for
// Pentagonal pyramidal number
class PentagonalNumber
{
func pentagonalPyramidalNo(_ k: Int)
{
var n: Int = 1;
// Print all initial k pentagonal pyramidal number
while (n <= k)
{
// Formula
// n²(n+1)
// —————————
// 2
// Calculate nth pentagonal pyramidal number
let result: Int = ((n * n) * (n + 1)) / 2;
// Display calculated result
print(" ", result, terminator: "");
n += 1;
}
}
}
func main()
{
let task: PentagonalNumber = PentagonalNumber();
// Pentagonal pyramidal number are
// —————————————————————————————————————————————
// 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
// 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
// 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
// 11368, 12615, 13950, 15376, 16896, 18513,
// 20230, 22050, 23976 etc.
// k = 10
task.pentagonalPyramidalNo(10);
}
main();
Output
1 6 18 40 75 126 196 288 405 550
// Kotlin program for
// Pentagonal pyramidal number
class PentagonalNumber
{
fun pentagonalPyramidalNo(k: Int): Unit
{
var n: Int = 1;
// Print all initial k pentagonal pyramidal number
while (n <= k)
{
// Formula
// n²(n+1)
// ———————
// 2
// Calculate nth pentagonal pyramidal number
val result: Int = ((n * n) * (n + 1)) / 2;
// Display calculated result
print(" " + result);
n += 1;
}
}
}
fun main(args: Array < String > ): Unit
{
val task: PentagonalNumber = PentagonalNumber();
// Pentagonal pyramidal number are
// —————————————————————————————————————————————
// 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726,
// 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610,
// 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206,
// 11368, 12615, 13950, 15376, 16896, 18513,
// 20230, 22050, 23976 etc.
// k = 10
task.pentagonalPyramidalNo(10);
}
Output
1 6 18 40 75 126 196 288 405 550
Output Explanation
The provided C code implements the above algorithm. The function pentagonalPyramidalNo(k)
takes an
integer 'k' as input, representing the number of pentagonal pyramidal numbers to generate. It then uses a loop from
1 to 'k' to calculate and display the first 'k' pentagonal pyramidal numbers.
The main function calls pentagonalPyramidalNo(10)
to generate and display the first 10 pentagonal
pyramidal numbers. The output of this code is:
1 6 18 40 75 126 196 288 405 550
Time Complexity
The time complexity of this code is O(k), where 'k' is the number of pentagonal pyramidal numbers to be generated.
The reason is that the function pentagonalPyramidalNo(k)
contains a loop that iterates 'k' times. For
each iteration, the algorithm performs constant-time calculations, so the overall time complexity is linear in 'k'.
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment