# Number of hamiltonian cycles in a complete graph

Here given code implementation process.

``````// C Program
// Number of hamiltonian cycles in a complete graph
#include <stdio.h>

void hamiltonianCycle(int node)
{
int count = 1;
int i = node - 1;
// Calculate factorial
while (i > 0)
{
count = count *i;
i--;
}
// Display number of nodes
printf("\n Number of node : %d", node);
// Display calculated result
printf("\n hamiltonian Cycle : %d", (count / 2));
}
int main()
{
// Test
hamiltonianCycle(6);
hamiltonianCycle(7);
hamiltonianCycle(4);
return 0;
}``````

#### Output

`````` Number of node : 6
hamiltonian Cycle : 60
Number of node : 7
hamiltonian Cycle : 360
Number of node : 4
hamiltonian Cycle : 3``````
``````// Java Program
// Number of hamiltonian cycles in a complete graph
public class Cycle
{
public void hamiltonianCycle(int node)
{
int count = 1;
int i = node - 1;
// Calculate factorial
while (i > 0)
{
count = count * i;
i--;
}
// Display number of nodes
System.out.print("\n Number of node : " + node);
// Display calculated result
System.out.print("\n hamiltonian Cycle : " + (count / 2));
}
public static void main(String[] args)
{
// Test
}
}``````

#### Output

`````` Number of node : 6
hamiltonian Cycle : 60
Number of node : 7
hamiltonian Cycle : 360
Number of node : 4
hamiltonian Cycle : 3``````
``````// Include header file
#include <iostream>
using namespace std;
// C++ Program
// Number of hamiltonian cycles in a complete graph
class Cycle
{
public: void hamiltonianCycle(int node)
{
int count = 1;
int i = node - 1;
// Calculate factorial
while (i > 0)
{
count = count *i;
i--;
}
// Display number of nodes
cout << "\n Number of node : " << node;
// Display calculated result
cout << "\n hamiltonian Cycle : " << (count / 2);
}
};
int main()
{
// Test
return 0;
}``````

#### Output

`````` Number of node : 6
hamiltonian Cycle : 60
Number of node : 7
hamiltonian Cycle : 360
Number of node : 4
hamiltonian Cycle : 3``````
``````// Include namespace system
using System;
// Csharp Program
// Number of hamiltonian cycles in a complete graph
public class Cycle
{
public void hamiltonianCycle(int node)
{
int count = 1;
int i = node - 1;
// Calculate factorial
while (i > 0)
{
count = count * i;
i--;
}
// Display number of nodes
Console.Write("\n Number of node : " + node);
// Display calculated result
Console.Write("\n hamiltonian Cycle : " + (count / 2));
}
public static void Main(String[] args)
{
// Test
}
}``````

#### Output

`````` Number of node : 6
hamiltonian Cycle : 60
Number of node : 7
hamiltonian Cycle : 360
Number of node : 4
hamiltonian Cycle : 3``````
``````package main
import "fmt"
// Go Program
// Number of hamiltonian cycles in a complete graph

func hamiltonianCycle(node int) {
var count int = 1
var i int = node - 1
// Calculate factorial
for (i > 0) {
count = count * i
i--
}
// Display number of nodes
fmt.Print("\n Number of node : ", node)
// Display calculated result
fmt.Print("\n hamiltonian Cycle : ", (count / 2))
}
func main() {

// Test
hamiltonianCycle(6)
hamiltonianCycle(7)
hamiltonianCycle(4)
}``````

#### Output

`````` Number of node : 6
hamiltonian Cycle : 60
Number of node : 7
hamiltonian Cycle : 360
Number of node : 4
hamiltonian Cycle : 3``````
``````<?php
// Php Program
// Number of hamiltonian cycles in a complete graph
class Cycle
{
public	function hamiltonianCycle(\$node)
{
\$count = 1;
\$i = \$node - 1;
// Calculate factorial
while (\$i > 0)
{
\$count = \$count * \$i;
\$i--;
}
// Display number of nodes
echo("\n Number of node : ".\$node);
// Display calculated result
echo("\n hamiltonian Cycle : ".((int)(\$count / 2)));
}
}

function main()
{
// Test
}
main();``````

#### Output

`````` Number of node : 6
hamiltonian Cycle : 60
Number of node : 7
hamiltonian Cycle : 360
Number of node : 4
hamiltonian Cycle : 3``````
``````// Node JS Program
// Number of hamiltonian cycles in a complete graph
class Cycle
{
hamiltonianCycle(node)
{
var count = 1;
var i = node - 1;
// Calculate factorial
while (i > 0)
{
count = count * i;
i--;
}
// Display number of nodes
process.stdout.write("\n Number of node : " + node);
// Display calculated result
process.stdout.write("\n hamiltonian Cycle : " + (parseInt(count / 2)));
}
}

function main()
{
// Test
}
main();``````

#### Output

`````` Number of node : 6
hamiltonian Cycle : 60
Number of node : 7
hamiltonian Cycle : 360
Number of node : 4
hamiltonian Cycle : 3``````
``````#  Python 3 Program
#  Number of hamiltonian cycles in a complete graph
class Cycle :
def hamiltonianCycle(self, node) :
count = 1
i = node - 1
#  Calculate factorial
while (i > 0) :
count = count * i
i -= 1

#  Display number of nodes
print("\n Number of node : ", node, end = "")
#  Display calculated result
print("\n hamiltonian Cycle : ", (int(count / 2)), end = "")

def main() :
#  Test

if __name__ == "__main__": main()``````

#### Output

`````` Number of node :  6
hamiltonian Cycle :  60
Number of node :  7
hamiltonian Cycle :  360
Number of node :  4
hamiltonian Cycle :  3``````
``````#  Ruby Program
#  Number of hamiltonian cycles in a complete graph
class Cycle
def hamiltonianCycle(node)
count = 1
i = node - 1
#  Calculate factorial
while (i > 0)
count = count * i
i -= 1
end

#  Display number of nodes
print("\n Number of node : ", node)
#  Display calculated result
print("\n hamiltonian Cycle : ", (count / 2))
end

end

def main()
#  Test
end

main()``````

#### Output

`````` Number of node : 6
hamiltonian Cycle : 60
Number of node : 7
hamiltonian Cycle : 360
Number of node : 4
hamiltonian Cycle : 3``````
``````// Scala Program
// Number of hamiltonian cycles in a complete graph
class Cycle()
{
def hamiltonianCycle(node: Int): Unit = {
var count: Int = 1;
var i: Int = node - 1;
// Calculate factorial
while (i > 0)
{
count = count * i;
i -= 1;
}
// Display number of nodes
print("\n Number of node : " + node);
// Display calculated result
print("\n hamiltonian Cycle : " + (count / 2));
}
}
object Main
{
def main(args: Array[String]): Unit = {
var task: Cycle = new Cycle();
// Test
}
}``````

#### Output

`````` Number of node : 6
hamiltonian Cycle : 60
Number of node : 7
hamiltonian Cycle : 360
Number of node : 4
hamiltonian Cycle : 3``````
``````// Swift 4 Program
// Number of hamiltonian cycles in a complete graph
class Cycle
{
func hamiltonianCycle(_ node: Int)
{
var count: Int = 1;
var i: Int = node - 1;
// Calculate factorial
while (i > 0)
{
count = count * i;
i -= 1;
}
// Display number of nodes
print("\n Number of node : ", node, terminator: "");
// Display calculated result
print("\n hamiltonian Cycle : ", (count / 2), terminator: "");
}
}
func main()
{
// Test
}
main();``````

#### Output

`````` Number of node :  6
hamiltonian Cycle :  60
Number of node :  7
hamiltonian Cycle :  360
Number of node :  4
hamiltonian Cycle :  3``````
``````// Kotlin Program
// Number of hamiltonian cycles in a complete graph
class Cycle
{
fun hamiltonianCycle(node: Int): Unit
{
var count: Int = 1;
var i: Int = node - 1;
// Calculate factorial
while (i > 0)
{
count = count * i;
i -= 1;
}
// Display number of nodes
print("\n Number of node : " + node);
// Display calculated result
print("\n hamiltonian Cycle : " + (count / 2));
}
}
fun main(args: Array < String > ): Unit
{
// Test
}``````

#### Output

`````` Number of node : 6
hamiltonian Cycle : 60
Number of node : 7
hamiltonian Cycle : 360
Number of node : 4
hamiltonian Cycle : 3`````` ## Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.