# Merge two Binary Min Heap Tree

Here given code implementation process.

``````/*
C++ program
Merge two Binary Min Heap Tree
*/
//Tree node
#include<iostream>

using namespace std;
class Node {
public:

//Left and right child
Node *left;
Node *right;
//Data value
int key;
Node(int key) {
this->key = key;
this->left = NULL;
this->right = NULL;
}
};
class MinHeap {
public:

//This is use to store information of number of nodes in Min heap
int size;
Node *root;
MinHeap() {
this->root = NULL;
this->size = 0;
}
//Get height of insert new node
int insert_height() {
int i = 1;
int sum = 0;
while (this->size > sum + (1 << i)) {
sum += (1 << i);
i++;
}
return i;
}
void swap_node(Node *first, Node *second) {
int key = first->key;
first->key = second->key;
second->key = key;
}
//Arrange node key
void arrange_node(Node *root) {
if (root->left != NULL && root->left->key < root->key) {
this->swap_node(root, root->left);
}
if (root->right != NULL && root->right->key < root->key) {
this->swap_node(root, root->right);
}
}
bool add_node(Node *root, int height, int level, Node *newNode) {
if (level >= height) {
return false;
}
if (root != NULL) {
if (level - 1 == height && root->left == NULL || root->right == NULL) {
if (root->left == NULL) {
root->left = newNode;
} else {
root->right = newNode;
}
this->arrange_node(root);
return true;
}
if (this->add_node(root->left, height, level + 1, newNode) ||
this->add_node(root->right, height, level + 1, newNode)) {
//Check effect of new inserted node
this->arrange_node(root);
return true;
}
}
return false;
}
//Handles the request to new inserting node
void insert(int key) {
if (this->root == NULL) {
this->root = new Node(key);
} else
if (this->root->left == NULL) {
this->root->left = new Node(key);
this->arrange_node(this->root);
} else
if (this->root->right == NULL) {
this->root->right = new Node(key);
this->arrange_node(this->root);
} else {
int height = this->insert_height();
Node *newNode = new Node(key);
this->add_node(this->root, height, 0, newNode);
}
this->size++;
}
Node* combine(MinHeap first, MinHeap second, Node *root) {
if (root != NULL) {
root->left = first.combine(first, second, root->left);
root->right = first.combine(first, second, root->right);
if (root->left == NULL && root->right == NULL) {
int height = first.insert_height();
//add node in first tree
first.add_node(first.root, height, 0, root);
first.size++;
second.size--;
return NULL;
}
}
return root;
}
void merge(MinHeap heap2) {
if (this->root != NULL && heap2.root != NULL) {
if (this->size > heap2.size) {
cout << "\n\n Merging of heap 2 in heap 1 ";
//add node element in first tree
// cout<<this->root<<endl;
heap2.root = this->combine(*this,heap2, heap2.root);
} else {
cout << "\n\n Merging of heap 1 in heap 2 ";
//add node element in second tree
this->root = this->combine(heap2,*this, this->root);
//   cout<<heap2.root->key<<endl;
}
}
}
void preorder(Node *root) {
if (root != NULL) {
cout << " " << root->key;
this->preorder(root->left);
this->preorder(root->right);
}
}
void inorder(Node *root) {
if (root != NULL) {
this->inorder(root->left);
cout << " " << root->key;
this->inorder(root->right);
}
}
void postorder(Node *root) {
if (root != NULL) {
this->postorder(root->left);
this->postorder(root->right);
cout << " " << root->key;
}
}
void print_data()
{
cout << "\nPreorder : \n";
preorder(this->root);
cout << "\nInorder : \n";
inorder(this->root);
cout << "\nPostorder : \n";
postorder(this->root);
}
};
int main() {
MinHeap heap1 = MinHeap();

//Construct first Min heap tree
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);
/*After insert element*/
/*
8
/    \
10     12
/  \    /
13   11 14

Preorder :
8  10  13  11  12  14
Inorder :
13  10  11  8  14  12
Postorder :
13  11  10  14  12  8

*/
MinHeap heap2 = MinHeap();
//Construct second Min heap tree

for (int i = 7; i > 0; i--) {
heap2.insert(i);
}
/*After insert element*/
/*
1
/    \
/      \
4        2
/   \     /  \
7     5   6    3

Preorder :
1  4  7  5  2  6  3
Inorder :
7  4  5  1  6  2  3
Postorder :
7  5  4  6  3  2  1

*/

cout << "First heap element : \n";
heap1.print_data();
cout << "\n\nSecond heap element : \n";
heap2.print_data();

heap1.merge(heap2);

cout << "\n After Merges ";
/*After Merge element*/
/*
1
/       \
/         \
4            2
/   \         /  \
7     5       6    3
/ \    /\     /  \
13  11 10 14  12   8

Preorder :
1  4  7  13  11  5  10  14  2  6  12  8  3
Inorder :
13  7  11  4  10  5  14  1  12  6  8  2  3
Postorder :
13  11  7  10  14  5  4  12  8  6  3  2  1
*/

if (heap1.root != NULL) {
cout << "\n\nFirst heap element : ";
heap1.print_data();
}
if (heap2.root != NULL) {
cout << "\n\nSecond heap element : \n";
heap2.print_data();
}
return 0;
}```
```

#### Output

``````First heap element :

Preorder :
8 10 13 11 12 14
Inorder :
13 10 11 8 14 12
Postorder :
13 11 10 14 12 8

Second heap element :

Preorder :
1 4 7 5 2 6 3
Inorder :
7 4 5 1 6 2 3
Postorder :
7 5 4 6 3 2 1

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
1 4 7 13 11 5 10 14 2 6 12 8 3
Inorder :
13 7 11 4 10 5 14 1 12 6 8 2 3
Postorder :
13 11 7 10 14 5 4 12 8 6 3 2 1``````
``````/*
Java program
Merge two Binary Min Heap Tree
*/
//Tree node
class Node
{
//Left and right child
public Node left;
public Node right;

//Data value
public int key;

public Node(int key)
{
this.key = key;

left = null;
right = null;
}
}
public class MinHeap
{
//This is use to store information of number of nodes in Min heap
public int size;

public Node root;

public MinHeap()
{
root = null;

size = 0;
}

//Get height of insert new node
public int insert_height()
{
int i=1;

int sum=0;

while(this.size > sum+(1<<i) )
{
sum += (1<<i);
i++;
}
return i;
}
public  void swap_node(Node first,Node second)
{
int key = first.key;

first.key = second.key;
second.key = key;
}
//Arrange node key
public void arrange_node(Node root)
{

if(root.left!=null && root.left.key < root.key)
{
swap_node(root,root.left);
}
if(root.right!=null && root.right.key < root.key)
{
swap_node(root,root.right);
}
}
public boolean  add_node(Node root, int height ,int level,Node newNode)
{
if(level >= height )
{
return false;
}
if(root != null)
{

if(level-1 == height && root.left == null || root.right == null)
{
if(root.left==null)
{
root.left=newNode;
}
else
{
root.right=newNode;
}

arrange_node(root);

return true;
}

{
//Check effect of new inserted node
arrange_node(root);

return true;
}

}
return false;
}
//Handles the request to new inserting node
public void insert(int key)
{

if(root==null)
{
root=new Node(key);
}
else if(root.left==null)
{
root.left = new Node(key);
arrange_node(root);

}
else if(root.right==null)
{
root.right = new Node(key);
arrange_node(root);
}
else
{
int height = insert_height();
Node newNode=new Node(key);
}
this.size++;
}
public Node combine(MinHeap first,MinHeap second ,Node root)
{

if(root!=null)
{
root.left=combine(first,second,root.left);
root.right=combine(first,second,root.right);

if(root.left==null && root.right==null)
{

int height = first.insert_height();
//add node in first tree
first.size++;
second.size--;
return null;
}
}
return root;
}
public void merge(MinHeap heap2)
{

if(this.root !=null && heap2.root!=null)
{
if(this.size>heap2.size)
{
System.out.print("\n\n Merging of heap 2 in heap 1 ");
//add node element in first tree
heap2.root=combine(this,heap2,heap2.root);
}
else
{
System.out.print("\n\n Merging of heap 1 in heap 2 ");
//add node element in second tree
this.root=combine(heap2,this,this.root);
}
}
}

public void preorder(Node root)
{
if(root!=null)
{
System.out.print("  "+root.key);
preorder(root.left);

preorder(root.right);
}
}
public void inorder(Node root)
{
if(root!=null)
{

inorder(root.left);
System.out.print("  "+root.key);
inorder(root.right);
}
}

public void postorder(Node root)
{
if(root!=null)
{

postorder(root.left);

postorder(root.right);
System.out.print("  "+root.key);
}
}
public void print_nodes()
{
System.out.print("\nPreorder : \n" );
preorder(this.root);
System.out.print("\nInorder : \n" );
inorder(this.root);
System.out.print("\nPostorder : \n" );
postorder(this.root);
}

public static void main(String[] args)
{

MinHeap heap1= new MinHeap();

//Construct first Min heap tree
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);

/*After insert element*/

/*
8
/    \
10     12
/  \    /
13   11 14

Preorder :
8  10  13  11  12  14
Inorder :
13  10  11  8  14  12
Postorder :
13  11  10  14  12  8

*/

MinHeap heap2= new MinHeap();

//Construct second Min heap tree
for (int i=7;i> 0;i-- )
{
heap2.insert(i);
}

/*After insert element*/

/*
1
/    \
/      \
4        2
/   \     /  \
7     5   6    3

Preorder :
1  4  7  5  2  6  3
Inorder :
7  4  5  1  6  2  3
Postorder :
7  5  4  6  3  2  1

*/

System.out.print("First heap element : \n" );

heap1.print_nodes();

System.out.print("\n\nSecond heap element : \n" );
heap2.print_nodes();

heap1.merge(heap2);

System.out.print("\n  After Merges ");

/*After Merge element*/

/*
1
/       \
/         \
4            2
/   \         /  \
7     5       6    3
/ \    /\     /  \
13  11 10 14  12   8

Preorder :
1  4  7  13  11  5  10  14  2  6  12  8  3
Inorder :
13  7  11  4  10  5  14  1  12  6  8  2  3
Postorder :
13  11  7  10  14  5  4  12  8  6  3  2  1
*/
if(heap1.root!=null)
{
System.out.print("\n\nFirst heap element : " );
heap1.print_nodes();
}

if(heap2.root!=null)
{
System.out.print("\n\nSecond heap element : \n" );
heap2.print_nodes();
}

}
}```
```

#### Output

``````First heap element :

Preorder :
8 10 13 11 12 14
Inorder :
13 10 11 8 14 12
Postorder :
13 11 10 14 12 8

Second heap element :

Preorder :
1 4 7 5 2 6 3
Inorder :
7 4 5 1 6 2 3
Postorder :
7 5 4 6 3 2 1

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
1 4 7 13 11 5 10 14 2 6 12 8 3
Inorder :
13 7 11 4 10 5 14 1 12 6 8 2 3
Postorder :
13 11 7 10 14 5 4 12 8 6 3 2 1``````
``````/*
C# program
Merge two Binary Min Heap Tree
*/
//Tree node
using System;
public class Node {
//Left and right child
public Node left;
public Node right;
//Data value
public int key;
public Node(int key) {
this.key = key;
left = null;
right = null;
}
}
public class MinHeap {
//This is use to store information of number of nodes in Min heap
public int size;
public Node root;
public MinHeap() {
root = null;
size = 0;
}
//Get height of insert new node
public int insert_height() {
int i = 1;
int sum = 0;
while (this.size > sum + (1 << i)) {
sum += (1 << i);
i++;
}
return i;
}
public void swap_node(Node first, Node second) {
int key = first.key;
first.key = second.key;
second.key = key;
}
//Arrange node key
public void arrange_node(Node root) {
if (root.left != null && root.left.key < root.key) {
swap_node(root, root.left);
}
if (root.right != null && root.right.key < root.key) {
swap_node(root, root.right);
}
}
public Boolean add_node(Node root, int height, int level, Node newNode) {
if (level >= height) {
return false;
}
if (root != null) {
if (level - 1 == height && root.left == null || root.right == null) {
if (root.left == null) {
root.left = newNode;
} else {
root.right = newNode;
}
arrange_node(root);
return true;
}
if (add_node(root.left, height, level + 1, newNode) || add_node(root.right, height, level + 1, newNode)) {
arrange_node(root);
return true;
}
}
return false;
}
//Handles the request to new inserting node
public void insert(int key) {
if (root == null) {
root = new Node(key);
} else
if (root.left == null) {
root.left = new Node(key);
arrange_node(root);
} else
if (root.right == null) {
root.right = new Node(key);
arrange_node(root);
} else {
int height = insert_height();
Node newNode = new Node(key);
add_node(root, height, 0, newNode);
}
this.size++;
}
public Node combine(MinHeap first, MinHeap second, Node root) {
if (root != null) {
root.left = combine(first, second, root.left);
root.right = combine(first, second, root.right);
if (root.left == null && root.right == null) {
int height = first.insert_height();
add_node(first.root, height, 0, root);
first.size++;
second.size--;
return null;
}
}
return root;
}
public void merge(MinHeap heap2) {
if (this.root != null && heap2.root != null) {
if (this.size > heap2.size) {
Console.Write("\n\n Merging of heap 2 in heap 1 ");
//add node element in first tree
heap2.root = combine(this, heap2, heap2.root);
} else {
Console.Write("\n\n Merging of heap 1 in heap 2 ");
//add node element in second tree
this.root = combine(heap2, this, this.root);
}
}
}
public void preorder(Node root) {
if (root != null) {
Console.Write(" " + root.key);
preorder(root.left);
preorder(root.right);
}
}
public void inorder(Node root) {
if (root != null) {
inorder(root.left);
Console.Write(" " + root.key);
inorder(root.right);
}
}
public void postorder(Node root) {
if (root != null) {
postorder(root.left);
postorder(root.right);
Console.Write(" " + root.key);
}
}
public void print_nodes() {
Console.Write("\nPreorder : \n");
preorder(this.root);
Console.Write("\nInorder : \n");
inorder(this.root);
Console.Write("\nPostorder : \n");
postorder(this.root);
}
public static void Main(String[] args) {
MinHeap heap1 = new MinHeap();
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);
/*After insert element*/
/*
8
/    \
10     12
/  \    /
13   11 14

Preorder :
8  10  13  11  12  14
Inorder :
13  10  11  8  14  12
Postorder :
13  11  10  14  12  8

*/
MinHeap heap2 = new MinHeap();
//Construct second Min heap tree

for (int i = 7; i > 0; i--) {
heap2.insert(i);
}
Console.Write("First heap element : \n");
heap1.print_nodes();
Console.Write("\n\nSecond heap element : \n");
heap2.print_nodes();
heap1.merge(heap2);
Console.Write("\n After Merges ");
/*After Merge element*/
/*
1
/       \
/         \
4            2
/   \         /  \
7     5       6    3
/ \    /\     /  \
13  11 10 14  12   8

Preorder :
1  4  7  13  11  5  10  14  2  6  12  8  3
Inorder :
13  7  11  4  10  5  14  1  12  6  8  2  3
Postorder :
13  11  7  10  14  5  4  12  8  6  3  2  1
*/

if (heap1.root != null) {
Console.Write("\n\nFirst heap element : ");
heap1.print_nodes();
}
if (heap2.root != null) {
Console.Write("\n\nSecond heap element : \n");
heap2.print_nodes();
}
}
}```
```

#### Output

``````First heap element :

Preorder :
8 10 13 11 12 14
Inorder :
13 10 11 8 14 12
Postorder :
13 11 10 14 12 8

Second heap element :

Preorder :
1 4 7 5 2 6 3
Inorder :
7 4 5 1 6 2 3
Postorder :
7 5 4 6 3 2 1

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
1 4 7 13 11 5 10 14 2 6 12 8 3
Inorder :
13 7 11 4 10 5 14 1 12 6 8 2 3
Postorder :
13 11 7 10 14 5 4 12 8 6 3 2 1``````
``````<?php
/*
Php program
Merge two Binary Min Heap Tree
*/
//Tree node
class Node {
//Left and right child

public \$left;
public \$right;
//Data value
public \$key;

function __construct(\$key) {
\$this->key = \$key;
\$this->left = null;
\$this->right = null;
}
}
class MinHeap {
//This is use to store information of number of nodes in Min heap

public \$size;
public \$root;

function __construct() {
\$this->root = null;
\$this->size = 0;
}
//Get height of insert new node

public 	function insert_height() {
\$i = 1;
\$sum = 0;
while (\$this->size > \$sum + (1 << \$i)) {
\$sum += (1 << \$i);
\$i++;
}
return \$i;
}
public 	function swap_node(\$first, \$second) {
\$key = \$first->key;
\$first->key = \$second->key;
\$second->key = \$key;
}
//Arrange node key

public 	function arrange_node(\$root) {
if (\$root->left != null && \$root->left->key < \$root->key) {
\$this->swap_node(\$root, \$root->left);
}
if (\$root->right != null && \$root->right->key < \$root->key) {
\$this->swap_node(\$root, \$root->right);
}
}
public 	function add_node(\$root, \$height, \$level, \$newNode) {
if (\$level >= \$height) {
return false;
}
if (\$root != null) {
if (\$level - 1 == \$height && \$root->left == null || \$root->right == null) {
if (\$root->left == null) {
\$root->left = \$newNode;
} else {
\$root->right = \$newNode;
}
\$this->arrange_node(\$root);
return true;
}
if (\$this->add_node(\$root->left, \$height, \$level + 1, \$newNode) || \$this->add_node(\$root->right, \$height, \$level + 1, \$newNode)) {
//Check effect of new inserted node
\$this->arrange_node(\$root);
return true;
}
}
return false;
}
//Handles the request to new inserting node

public 	function insert(\$key) {
if (\$this->root == null) {
\$this->root = new Node(\$key);
} else
if (\$this->root->left == null) {
\$this->root->left = new Node(\$key);
\$this->arrange_node(\$this->root);
} else
if (\$this->root->right == null) {
\$this->root->right = new Node(\$key);
\$this->arrange_node(\$this->root);
} else {
\$height = \$this->insert_height();
\$newNode = new Node(\$key);
\$this->add_node(\$this->root, \$height, 0, \$newNode);
}
\$this->size++;
}
public 	function combine(\$first, \$second, \$root) {
if (\$root != null) {
\$root->left = \$this->combine(\$first, \$second, \$root->left);
\$root->right = \$this->combine(\$first, \$second, \$root->right);
if (\$root->left == null && \$root->right == null) {
\$height =
\$first->insert_height();
//add node in first tree
\$this->add_node(\$first->root, \$height, 0, \$root);
\$first->size++;
\$second->size--;
return null;
}
}
return \$root;
}
public 	function merge(\$heap2) {
if (\$this->root != null && \$heap2->root != null) {
if (\$this->size > \$heap2->size) {
echo("\n\n Merging of heap 2 in heap 1 ");
//add node element in first tree
\$heap2->root = \$this->combine(\$this, \$heap2, \$heap2->root);
} else {
echo("\n\n Merging of heap 1 in heap 2 ");
//add node element in second tree
\$this->root = \$this->combine(\$heap2, \$this, \$this->root);
}
}
}
public 	function preorder(\$root) {
if (\$root != null) {
echo(" ". \$root->key);
\$this->preorder(\$root->left);
\$this->preorder(\$root->right);
}
}
public 	function inorder(\$root) {
if (\$root != null) {
\$this->inorder(\$root->left);
echo(" ". \$root->key);
\$this->inorder(\$root->right);
}
}
public 	function postorder(\$root) {
if (\$root != null) {
\$this->postorder(\$root->left);
\$this->postorder(\$root->right);
echo(" ". \$root->key);
}
}
public 	function print_nodes() {
echo("\nPreorder : \n");
\$this->preorder(\$this->root);
echo("\nInorder : \n");
\$this->inorder(\$this->root);
echo("\nPostorder : \n");
\$this->postorder(\$this->root);
}
}

function main() {
\$heap1 = new MinHeap();
//Construct first Min heap tree

\$heap1->insert(8);
\$heap1->insert(10);
\$heap1->insert(14);
\$heap1->insert(13);
\$heap1->insert(11);
\$heap1->insert(12);
/*After insert element*/
/*
8
/    \
10     12
/  \    /
13   11 14

Preorder :
8  10  13  11  12  14
Inorder :
13  10  11  8  14  12
Postorder :
13  11  10  14  12  8

*/
\$heap2 = new MinHeap();
//Construct second Min heap tree

for (\$i = 7; \$i > 0; \$i--) {
\$heap2->insert(\$i);
}
/*After insert element*/
/*
1
/    \
/      \
4        2
/   \     /  \
7     5   6    3

Preorder :
1  4  7  5  2  6  3
Inorder :
7  4  5  1  6  2  3
Postorder :
7  5  4  6  3  2  1

*/

echo("First heap element : \n");
\$heap1->print_nodes();
echo("\n\nSecond heap element : \n");
\$heap2->print_nodes();
\$heap1->merge(\$heap2);
echo("\n After Merges ");
/*After Merge element*/
/*
1
/       \
/         \
4            2
/   \         /  \
7     5       6    3
/ \    /\     /  \
13  11 10 14  12   8

Preorder :
1  4  7  13  11  5  10  14  2  6  12  8  3
Inorder :
13  7  11  4  10  5  14  1  12  6  8  2  3
Postorder :
13  11  7  10  14  5  4  12  8  6  3  2  1
*/

if (\$heap1->root != null) {
echo("\n\nFirst heap element : ");
\$heap1->print_nodes();
}
if (\$heap2->root != null) {
echo("\n\nSecond heap element : \n");
\$heap2->print_nodes();
}

}
main();```
```

#### Output

``````First heap element :

Preorder :
8 10 13 11 12 14
Inorder :
13 10 11 8 14 12
Postorder :
13 11 10 14 12 8

Second heap element :

Preorder :
1 4 7 5 2 6 3
Inorder :
7 4 5 1 6 2 3
Postorder :
7 5 4 6 3 2 1

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
1 4 7 13 11 5 10 14 2 6 12 8 3
Inorder :
13 7 11 4 10 5 14 1 12 6 8 2 3
Postorder :
13 11 7 10 14 5 4 12 8 6 3 2 1``````
``````/*
Node Js program
Merge two Binary Min Heap Tree
*/
//Tree node
class Node {
constructor(key) {
this.key = key;
this.left = null;
this.right = null;
}
}
class MinHeap {
//This is use to store information of number of nodes in Min heap
;;
constructor() {
this.root = null;
this.size = 0;
}

//Get height of insert new node
insert_height() {
var i = 1;
var sum = 0;
while (this.size > sum + (1 << i)) {
sum += (1 << i);
i++;
}

return i;
}
swap_node(first, second) {
var key = first.key;
first.key = second.key;
second.key = key;
}

//Arrange node key
arrange_node(root) {
if (root.left != null && root.left.key < root.key) {
this.swap_node(root, root.left);
}

if (root.right != null && root.right.key < root.key) {
this.swap_node(root, root.right);
}
}
add_node(root, height, level, newNode) {
if (level >= height) {
return false;
}

if (root != null) {
if (level - 1 == height && root.left == null || root.right == null) {
if (root.left == null) {
root.left = newNode;
} else {
root.right = newNode;
}
this.arrange_node(root);
return true;
}

if (this.add_node(root.left, height, level + 1, newNode) || this.add_node(root.right, height, level + 1, newNode)) {
//Check effect of new inserted node
this.arrange_node(root);
return true;
}
}

return false;
}

//Handles the request to new inserting node
insert(key) {
if (this.root == null) {
this.root = new Node(key);
} else
if (this.root.left == null) {
this.root.left = new Node(key);
this.arrange_node(this.root);
} else
if (this.root.right == null) {
this.root.right = new Node(key);
this.arrange_node(this.root);
} else {
var height = this.insert_height();
var newNode = new Node(key);
this.add_node(this.root, height, 0, newNode);
}
this.size++;
}
combine(first, second, root) {
if (root != null) {
root.left = this.combine(first, second, root.left);
root.right = this.combine(first, second, root.right);
if (root.left == null && root.right == null) {
var height = first.insert_height();
//add node in first tree
this.add_node(first.root, height, 0, root);
first.size++;
second.size--;
return null;
}
}

return root;
}
merge(heap2) {
if (this.root != null && heap2.root != null) {
if (this.size > heap2.size) {
process.stdout.write("\n\n Merging of heap 2 in heap 1 ");
//add node element in first tree
heap2.root = this.combine(this, heap2, heap2.root);
} else {
process.stdout.write("\n\n Merging of heap 1 in heap 2 ");
//add node element in second tree
this.root = this.combine(heap2, this, this.root);
}
}
}
preorder(root) {
if (root != null) {
process.stdout.write(" " + root.key);
this.preorder(root.left);
this.preorder(root.right);
}
}
inorder(root) {
if (root != null) {
this.inorder(root.left);
process.stdout.write(" " + root.key);
this.inorder(root.right);
}
}
postorder(root) {
if (root != null) {
this.postorder(root.left);
this.postorder(root.right);
process.stdout.write(" " + root.key);
}
}
print_nodes() {
process.stdout.write("\nPreorder : \n");
this.preorder(this.root);
process.stdout.write("\nInorder : \n");
this.inorder(this.root);
process.stdout.write("\nPostorder : \n");
this.postorder(this.root);
}
}

function main(args) {
var heap1 = new MinHeap();
//Construct first Min heap tree
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);
/*After insert element*/
/*
8
/    \
10     12
/  \    /
13   11 14

Preorder :
8  10  13  11  12  14
Inorder :
13  10  11  8  14  12
Postorder :
13  11  10  14  12  8

*/
var heap2 = new MinHeap();
//Construct second Min heap tree

for (var i = 7; i > 0; i--) {
heap2.insert(i);
}

/*After insert element*/
/*
1
/    \
/      \
4        2
/   \     /  \
7     5   6    3

Preorder :
1  4  7  5  2  6  3
Inorder :
7  4  5  1  6  2  3
Postorder :
7  5  4  6  3  2  1

*/

process.stdout.write("First heap element : \n");
heap1.print_nodes();
process.stdout.write("\n\nSecond heap element : \n");
heap2.print_nodes();
heap1.merge(heap2);
process.stdout.write("\n After Merges ");
/*After Merge element*/
/*
1
/       \
/         \
4            2
/   \         /  \
7     5       6    3
/ \    /\     /  \
13  11 10 14  12   8

Preorder :
1  4  7  13  11  5  10  14  2  6  12  8  3
Inorder :
13  7  11  4  10  5  14  1  12  6  8  2  3
Postorder :
13  11  7  10  14  5  4  12  8  6  3  2  1
*/

if (heap1.root != null) {
process.stdout.write("\n\nFirst heap element : ");
heap1.print_nodes();
}

if (heap2.root != null) {
process.stdout.write("\n\nSecond heap element : \n");
heap2.print_nodes();
}
}

main();```
```

#### Output

``````First heap element :

Preorder :
8 10 13 11 12 14
Inorder :
13 10 11 8 14 12
Postorder :
13 11 10 14 12 8

Second heap element :

Preorder :
1 4 7 5 2 6 3
Inorder :
7 4 5 1 6 2 3
Postorder :
7 5 4 6 3 2 1

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
1 4 7 13 11 5 10 14 2 6 12 8 3
Inorder :
13 7 11 4 10 5 14 1 12 6 8 2 3
Postorder :
13 11 7 10 14 5 4 12 8 6 3 2 1``````
``````# Python 3 program
# Merge two Binary Min Heap Tree

# Tree node
class Node :
def __init__(self, key) :
self.key = key
self.left = None
self.right = None

class MinHeap :
# This is use to store information of number of nodes in Min heap
def __init__(self) :
self.root = None
self.size = 0
# Get height of insert new node
def insert_height(self) :
i = 1
sum = 0
while (self.size > sum + (1 << i)) :
sum += (1 << i)
i += 1

return i

def swap_node(self, first, second) :
key = first.key
first.key = second.key
second.key = key
# Arrange node key
def arrange_node(self, root) :
if (root.left != None and root.left.key < root.key) :
self.swap_node(root, root.left)

if (root.right != None and root.right.key < root.key) :
self.swap_node(root, root.right)

def add_node(self, root, height, level, newNode) :
if (level >= height) :
return False

if (root != None) :
if (level - 1 == height and root.left == None or root.right == None) :
if (root.left == None) :
root.left = newNode
else :
root.right = newNode

self.arrange_node(root)
return True

if (self.add_node(root.left, height, level + 1, newNode) or self.add_node(root.right, height, level + 1, newNode)) :
# Check effect of new inserted node
self.arrange_node(root)
return True

return False
# Handles the request to new inserting node
def insert(self, key) :
if (self.root == None) :
self.root = Node(key)
elif (self.root.left == None) :
self.root.left = Node(key)
self.arrange_node(self.root)
elif (self.root.right == None) :
self.root.right = Node(key)
self.arrange_node(self.root)
else :
height = self.insert_height()
newNode = Node(key)
self.add_node(self.root, height, 0, newNode)

self.size += 1

def combine(self, first, second, root) :
if (root != None) :
root.left = self.combine(first, second, root.left)
root.right = self.combine(first, second, root.right)
if (root.left == None and root.right == None) :
height = first.insert_height() # add node in first tree
self.add_node(first.root, height, 0, root)
first.size += 1
second.size -= 1
return None

return root

def merge(self, heap2) :
if (self.root != None and heap2.root != None) :
if (self.size > heap2.size) :
print("\n\n Merging of heap 2 in heap 1 ", end = "") # add node element in first tree
heap2.root = self.combine(self, heap2, heap2.root)
else :
print("\n\n Merging of heap 1 in heap 2 ", end = "") # add node element in second tree
self.root = self.combine(heap2, self, self.root)

def preorder(self, root) :
if (root != None) :
print(" ", root.key, end = "")
self.preorder(root.left)
self.preorder(root.right)

def inorder(self, root) :
if (root != None) :
self.inorder(root.left)
print(" ", root.key, end = "")
self.inorder(root.right)

def postorder(self, root) :
if (root != None) :
self.postorder(root.left)
self.postorder(root.right)
print(" ", root.key, end = "")

def print_nodes(self) :
print("\nPreorder : \n", end = "")
self.preorder(self.root)
print("\nInorder : \n", end = "")
self.inorder(self.root)
print("\nPostorder : \n", end = "")
self.postorder(self.root)

def main() :
heap1 = MinHeap() # Construct first Min heap tree
heap1.insert(8)
heap1.insert(10)
heap1.insert(14)
heap1.insert(13)
heap1.insert(11)
heap1.insert(12)
#
#                 8
#               /    \
#              10     12
#            /  \    /
#           13   11 14
#
#      Preorder :
#        8  10  13  11  12  14
#      Inorder :
#        13  10  11  8  14  12
#      Postorder :
#        13  11  10  14  12  8
#

#After insert element

#
#                 8
#               /    \
#              10     12
#            /  \    /
#           13   11 14
#
#      Preorder :
#        8  10  13  11  12  14
#      Inorder :
#        13  10  11  8  14  12
#      Postorder :
#        13  11  10  14  12  8
#

heap2 = MinHeap() # Construct second Min heap tree
i = 7
while (i > 0) :
heap2.insert(i)
i -= 1

print("First heap element : \n", end = "")
heap1.print_nodes()
print("\n\nSecond heap element : \n", end = "")
heap2.print_nodes()
heap1.merge(heap2)
print("\n After Merges ", end = "")
#
#                   1
#               /       \
#              /         \
#             4            2
#           /   \         /  \
#          7     5       6    3
#         / \    /\     /  \
#        13  11 10 14  12   8
#       Preorder :
#          1  4  7  13  11  5  10  14  2  6  12  8  3
#        Inorder :
#          13  7  11  4  10  5  14  1  12  6  8  2  3
#        Postorder :
#          13  11  7  10  14  5  4  12  8  6  3  2  1
#

#After Merge element

#
#                   1
#               /       \
#              /         \
#             4            2
#           /   \         /  \
#          7     5       6    3
#         / \    /\     /  \
#        13  11 10 14  12   8
#       Preorder :
#          1  4  7  13  11  5  10  14  2  6  12  8  3
#        Inorder :
#          13  7  11  4  10  5  14  1  12  6  8  2  3
#        Postorder :
#          13  11  7  10  14  5  4  12  8  6  3  2  1
#

if (heap1.root != None) :
print("\n\nFirst heap element : ", end = "")
heap1.print_nodes()

if (heap2.root != None) :
print("\n\nSecond heap element : \n", end = "")
heap2.print_nodes()

if __name__ == "__main__":
main()```
```

#### Output

``````First heap element :

Preorder :
8  10  13  11  12  14
Inorder :
13  10  11  8  14  12
Postorder :
13  11  10  14  12  8

Second heap element :

Preorder :
1  4  7  5  2  6  3
Inorder :
7  4  5  1  6  2  3
Postorder :
7  5  4  6  3  2  1

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
1  4  7  13  11  5  10  14  2  6  12  8  3
Inorder :
13  7  11  4  10  5  14  1  12  6  8  2  3
Postorder :
13  11  7  10  14  5  4  12  8  6  3  2  1``````
``````#  Ruby program
#  Merge two Binary Min Heap Tree

# Tree node
class Node
# Define the accessor and reader of class Node
attr_reader :left, :right, :key
attr_accessor :left, :right, :key
def initialize(key)
self.key = key
@left = nil
@right = nil
end
end

class MinHeap
# Define the accessor and reader of class MinHeap
# This is use to store information of number of nodes in Min heap
attr_accessor :size, :root

def initialize()
@root = nil
@size = 0
end
# Get height of insert new node
def insert_height()
i = 1
sum = 0
while (self.size > sum + (1 << i))
sum += (1 << i)
i += 1
end
return i
end
def swap_node(first, second)
data = first.key
first.key = second.key
second.key = data
end
# Arrange node key
def arrange_node(root)
if (root.left != nil && root.left.key < root.key)
self.swap_node(root, root.left)
end
if (root.right != nil && root.right.key < root.key)
self.swap_node(root, root.right)
end
end
def add_node(root, height, level, newNode)
if (level >= height)
return false
end
if (root != nil)
if (level - 1 == height && root.left == nil || root.right == nil)
if (root.left == nil)
root.left = newNode
else
root.right = newNode
end
self.arrange_node(root)
return true
end
if (self.add_node(root.left, height, level + 1, newNode) || self.add_node(root.right, height, level + 1, newNode))
# Check effect of new inserted node
self.arrange_node(root)
return true
end
end
return false
end
# Handles the request to new inserting node
def insert(key)
if (@root == nil)
@root = Node.new(key)
elsif (@root.left == nil)
@root.left = Node.new(key)
self.arrange_node(@root)
elsif (@root.right == nil)
@root.right = Node.new(key)
self.arrange_node(@root)
else
height = self.insert_height()
newNode = Node.new(key)
self.add_node(@root, height, 0, newNode)
end
self.size += 1
end
def combine(first, second, root)
if (root != nil)
root.left = self.combine(first, second, root.left)
root.right = self.combine(first, second, root.right)
if (root.left == nil && root.right == nil)
height = first.insert_height()
# add node in first tree
self.add_node(first.root, height, 0, root)
first.size += 1
second.size -= 1
return nil
end
end
return root
end
def merge(heap2)
if (self.root != nil && heap2.root != nil)
if (self.size > heap2.size)
print("\n\n Merging of heap 2 in heap 1 ")
# add node element in first tree
heap2.root = self.combine(self, heap2, heap2.root)
else
print("\n\n Merging of heap 1 in heap 2 ")
# add node element in second tree
self.root = self.combine(heap2, self, self.root)
end
end
end
def preorder(root)
if (root != nil)
print(" ", root.key)
self.preorder(root.left)
self.preorder(root.right)
end
end
def inorder(root)
if (root != nil)
self.inorder(root.left)
print(" ", root.key)
self.inorder(root.right)
end
end
def postorder(root)
if (root != nil)
self.postorder(root.left)
self.postorder(root.right)
print(" ", root.key)
end
end
def print_nodes()
print("\nPreorder  :\n")
self.preorder(self.root)
print("\nInorder  :\n")
self.inorder(self.root)
print("\nPostorder  :\n")
self.postorder(self.root)
end
end
def main()
heap1 = MinHeap.new()
# Construct first Min heap tree
heap1.insert(8)
heap1.insert(10)
heap1.insert(14)
heap1.insert(13)
heap1.insert(11)
heap1.insert(12)
#After insert element

#
#                 8
#               /    \
#              10     12
#            /  \    /
#           13   11 14
#
#      Preorder  :
#        8  10  13  11  12  14
#      Inorder  :
#        13  10  11  8  14  12
#      Postorder  :
#        13  11  10  14  12  8
#

heap2 = MinHeap.new()
# Construct second Min heap tree
i = 7
while (i > 0)
heap2.insert(i)
i -= 1
end
#After insert element

#
#                1
#             /    \
#            /      \
#           4        2
#         /   \     /  \
#        7     5   6    3
#    Preorder  :
#      1  4  7  5  2  6  3
#    Inorder  :
#      7  4  5  1  6  2  3
#    Postorder  :
#      7  5  4  6  3  2  1
#

print("First heap element  :\n")
heap1.print_nodes()
print("\n\nSecond heap element  :\n")
heap2.print_nodes()
heap1.merge(heap2)
print("\n After Merges ")
#After Merge element

#
#                   1
#               /       \
#              /         \
#             4            2
#           /   \         /  \
#          7     5       6    3
#         / \    /\     /  \
#        13  11 10 14  12   8
#       Preorder  :
#          1  4  7  13  11  5  10  14  2  6  12  8  3
#        Inorder  :
#          13  7  11  4  10  5  14  1  12  6  8  2  3
#        Postorder  :
#          13  11  7  10  14  5  4  12  8  6  3  2  1
#

if (heap1.root != nil)
print("\n\nFirst heap element  :")
heap1.print_nodes()
end
if (heap2.root != nil)
print("\n\nSecond heap element  :\n")
heap2.print_nodes()
end
end

main()```
```

#### Output

``````First heap element  :

Preorder  :
8 10 13 11 12 14
Inorder  :
13 10 11 8 14 12
Postorder  :
13 11 10 14 12 8

Second heap element  :

Preorder  :
1 4 7 5 2 6 3
Inorder  :
7 4 5 1 6 2 3
Postorder  :
7 5 4 6 3 2 1

Merging of heap 1 in heap 2
After Merges

Second heap element  :

Preorder  :
1 4 7 13 11 5 10 14 2 6 12 8 3
Inorder  :
13 7 11 4 10 5 14 1 12 6 8 2 3
Postorder  :
13 11 7 10 14 5 4 12 8 6 3 2 1``````
``````/*
Scala program
Merge two Binary Min Heap Tree
*/
//Tree node
class Node(var left: Node,
var right: Node,
var key: Int) {

def this(key: Int) {
this(null,null,key);
}
}
class MinHeap(var size: Int,var root: Node) {

def this() {
this(0,null);
}
//Get height of insert new node
def insert_height(): Int = {
var i: Int = 1;
var sum: Int = 0;
while (this.size > sum + (1 << i)) {
sum += (1 << i);
i += 1;
}
return i;
}
def swap_node(first: Node, second: Node): Unit = {
val data: Int = first.key;
first.key = second.key;
second.key = data;
}
//Arrange node key
def arrange_node(root: Node): Unit = {
if (root.left != null && root.left.key < root.key) {
this.swap_node(root, root.left);
}
if (root.right != null && root.right.key < root.key) {
this.swap_node(root, root.right);
}
}
def add_node(root: Node, height: Int, level: Int, newNode: Node): Boolean = {
if (level >= height) {
return false;
}
if (root != null) {
if (level - 1 == height && root.left == null || root.right == null) {
if (root.left == null) {
root.left = newNode;
} else {
root.right = newNode;
}
this.arrange_node(root);

return true;
}
if (this.add_node(root.left, height, level + 1, newNode) || this.add_node(root.right, height, level + 1, newNode)) {
//Check effect of new inserted node
this.arrange_node(root);

return true;
}
}
return false;
}
//Handles the request to new inserting node
def insert(key: Int): Unit = {
if (this.root == null) {
this.root = new Node(key);
} else
if (this.root.left == null) {
this.root.left = new Node(key);
this.arrange_node(this.root);
} else
if (this.root.right == null) {
this.root.right = new Node(key);
this.arrange_node(this.root);
} else {
var height: Int = this.insert_height();
var newNode: Node = new Node(key);
this.add_node(this.root, height, 0, newNode);
}
this.size += 1;
}
def combine(first: MinHeap, second: MinHeap, root: Node): Node = {
if (root != null) {
root.left = this.combine(first, second, root.left);
root.right = this.combine(first, second, root.right);

if (root.left == null && root.right == null) {
val height: Int = first.insert_height();

//add node in first tree
this.add_node(first.root, height, 0, root);
first.size += 1;
second.size -= 1;

return null;
}
}
return root;
}
def merge(heap2: MinHeap): Unit = {
if (this.root != null && heap2.root != null) {
if (this.size > heap2.size) {
print("\n\n Merging of heap 2 in heap 1 ");

//add node element in first tree
heap2.root = this.combine(this, heap2, heap2.root);
} else {
print("\n\n Merging of heap 1 in heap 2 ");

//add node element in second tree
this.root = this.combine(heap2, this, this.root);
}
}
}
def preorder(root: Node): Unit = {
if (root != null) {
print(" " + root.key);
this.preorder(root.left);
this.preorder(root.right);
}
}
def inorder(root: Node): Unit = {
if (root != null) {
this.inorder(root.left);
print(" " + root.key);
this.inorder(root.right);
}
}
def postorder(root: Node): Unit = {
if (root != null) {
this.postorder(root.left);
this.postorder(root.right);
print(" " + root.key);
}
}
def print_nodes(): Unit = {
print("\nPreorder : \n");
this.preorder(this.root);
print("\nInorder : \n");
this.inorder(this.root);
print("\nPostorder : \n");
this.postorder(this.root);
}
}
object Main {
def main(args: Array[String]): Unit = {
val heap1: MinHeap = new MinHeap();

//Construct first Min heap tree
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);

/*After insert element*/
/*
8
/    \
10     12
/  \    /
13   11 14

Preorder :
8  10  13  11  12  14
Inorder :
13  10  11  8  14  12
Postorder :
13  11  10  14  12  8

*/
var heap2: MinHeap = new MinHeap();

//Construct second Min heap tree
var i: Int = 7;
while (i > 0) {
heap2.insert(i);
i -= 1;
}
/*After insert element*/
/*
1
/    \
/      \
4        2
/   \     /  \
7     5   6    3

Preorder :
1  4  7  5  2  6  3
Inorder :
7  4  5  1  6  2  3
Postorder :
7  5  4  6  3  2  1

*/
print("First heap element : \n");
heap1.print_nodes();
print("\n\nSecond heap element : \n");
heap2.print_nodes();
heap1.merge(heap2);
print("\n After Merges ");

/*After Merge element*/
/*
1
/       \
/         \
4            2
/   \         /  \
7     5       6    3
/ \    /\     /  \
13  11 10 14  12   8

Preorder :
1  4  7  13  11  5  10  14  2  6  12  8  3
Inorder :
13  7  11  4  10  5  14  1  12  6  8  2  3
Postorder :
13  11  7  10  14  5  4  12  8  6  3  2  1
*/

if (heap1.root != null) {
print("\n\nFirst heap element : ");
heap1.print_nodes();
}
if (heap2.root != null) {
print("\n\nSecond heap element : \n");
heap2.print_nodes();
}
}
}```
```

#### Output

``````First heap element :

Preorder :
8 10 13 11 12 14
Inorder :
13 10 11 8 14 12
Postorder :
13 11 10 14 12 8

Second heap element :

Preorder :
1 4 7 5 2 6 3
Inorder :
7 4 5 1 6 2 3
Postorder :
7 5 4 6 3 2 1

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
1 4 7 13 11 5 10 14 2 6 12 8 3
Inorder :
13 7 11 4 10 5 14 1 12 6 8 2 3
Postorder :
13 11 7 10 14 5 4 12 8 6 3 2 1``````
``````/*
Swift program
Merge two Binary Min Heap Tree
*/
//Tree node
class Node {
//Left and right child
var left : Node?;
var right : Node?;
//Data value
var key : Int;
init(_ key: Int) {
self.key = key;
self.left = nil;
self.right = nil;
}
}
class MinHeap {

//This is use to store information of number of nodes in Min heap
var	size : Int;
var root : Node?;
init() {
self.root = nil;
self.size = 0;
}
//Get height of insert new node
func insert_height() -> Int {
var i = 1;
var sum = 0;
while (self.size > sum + (1 << i)) {
sum += (1 << i);
i += 1;
}
return i;
}
func swap_node(_ first: Node?, _ second: Node?) {
let data = first!.key;
first!.key = second!.key;
second!.key = data;
}
//Arrange node key
func arrange_node(_ root: Node?) {
if (root!.left != nil && root!.left!.key < root!.key) {
self.swap_node(root, root!.left);
}
if (root!.right != nil && root!.right!.key < root!.key) {
self.swap_node(root, root!.right);
}
}
func add_node(_ root: Node?, _ height: Int, _ level: Int, _ newNode: Node?) -> Bool {
if (level >= height) {
return false;
}
if (root != nil) {
if (level - 1 == height && root!.left == nil || root!.right == nil) {
if (root!.left == nil) {
root!.left = newNode;
} else {
root!.right = newNode;
}
self.arrange_node(root);
return true;
}
if (self.add_node(root!.left, height, level + 1, newNode) ||
self.add_node(root!.right, height, level + 1, newNode)) {
//Check effect of new inserted node
self.arrange_node(root);
return true;
}
}
return false;
}
//Handles the request to new inserting node
func insert(_ key: Int) {
if (self.root == nil) {
self.root = Node(key);
} else
if (self.root!.left == nil) {
self.root!.left = Node(key);
self.arrange_node(self.root);
} else
if (self.root!.right == nil) {
self.root!.right = Node(key);
self.arrange_node(self.root);
} else {
let height = self.insert_height();
let newNode = Node(key);
let _ = self.add_node(self.root, height, 0, newNode);
}
self.size += 1;
}
func combine(_ first: MinHeap, _ second: MinHeap, _ root: Node?) -> Node? {
if (root != nil) {
root!.left = self.combine(first, second, root!.left);
root!.right = self.combine(first, second, root!.right);
if (root!.left == nil && root!.right == nil) {
let height = first.insert_height();
//add node in first tree
let _  = self.add_node(first.root, height, 0, root);
first.size += 1;
second.size -= 1;
return nil;
}
}
return root;
}
func merge(_ heap2: MinHeap) {
if (self.root != nil && heap2.root != nil) {
if (self.size > heap2.size) {
print("\n\n Merging of heap 2 in heap 1 ", terminator: "");
//add node element in first tree
heap2.root = self.combine(self, heap2, heap2.root);
} else {
print("\n\n Merging of heap 1 in heap 2 ", terminator: "");
//add node element in second tree
self.root = self.combine(heap2, self, self.root);
}
}
}
func preorder(_ root: Node?) {
if (root != nil) {
print(" ", root!.key, terminator: "");
self.preorder(root!.left);
self.preorder(root!.right);
}
}
func inorder(_ root: Node?) {
if (root != nil) {
self.inorder(root!.left);
print(" ", root!.key, terminator: "");
self.inorder(root!.right);
}
}
func postorder(_ root: Node?) {
if (root != nil) {
self.postorder(root!.left);
self.postorder(root!.right);
print(" ", root!.key, terminator: "");
}
}
func print_nodes() {
print("\nPreorder : \n", terminator: "");
self.preorder(self.root);
print("\nInorder : \n", terminator: "");
self.inorder(self.root);
print("\nPostorder : \n", terminator: "");
self.postorder(self.root);
}
}
func main() {
let heap1 = MinHeap();
//Construct first Min heap tree
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);
/*After insert element*/
/*
8
/    \
10     12
/  \    /
13   11 14

Preorder :
8  10  13  11  12  14
Inorder :
13  10  11  8  14  12
Postorder :
13  11  10  14  12  8

*/
let heap2 = MinHeap();
//Construct second Min heap tree
var i = 7;
while (i > 0) {
heap2.insert(i);
i -= 1;
}
print("First heap element : \n", terminator: "");
heap1.print_nodes();
print("\n\nSecond heap element : \n", terminator: "");
heap2.print_nodes();
heap1.merge(heap2);
print("\n After Merges ", terminator: "");
/*After Merge element*/
/*
1
/       \
/         \
4            2
/   \         /  \
7     5       6    3
/ \    /\     /  \
13  11 10 14  12   8

Preorder :
1  4  7  13  11  5  10  14  2  6  12  8  3
Inorder :
13  7  11  4  10  5  14  1  12  6  8  2  3
Postorder :
13  11  7  10  14  5  4  12  8  6  3  2  1
*/

if (heap1.root != nil) {
print("\n\nFirst heap element : ", terminator: "");
heap1.print_nodes();
}
if (heap2.root != nil) {
print("\n\nSecond heap element : \n", terminator: "");
heap2.print_nodes();
}
}
main();```
```

#### Output

``````First heap element :

Preorder :
8  10  13  11  12  14
Inorder :
13  10  11  8  14  12
Postorder :
13  11  10  14  12  8

Second heap element :

Preorder :
1  4  7  5  2  6  3
Inorder :
7  4  5  1  6  2  3
Postorder :
7  5  4  6  3  2  1

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
1  4  7  13  11  5  10  14  2  6  12  8  3
Inorder :
13  7  11  4  10  5  14  1  12  6  8  2  3
Postorder :
13  11  7  10  14  5  4  12  8  6  3  2  1``````

## Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.