# Merge two Binary Max Heap Tree

Here given code implementation process.

``````/*
C++ program
Merge two Binary Max Heap Tree
*/
//Tree node
#include<iostream>

using namespace std;
class Node {
public:

//Left and right child
Node *left;
Node *right;
//Data value
int key;
Node(int key) {
this->key = key;
this->left = NULL;
this->right = NULL;
}
};
class MaxHeap {
public:

//This is use to store information of number of nodes in Max heap
int size;
Node *root;
MaxHeap() {
this->root = NULL;
this->size = 0;
}
//Get height of insert new node
int insert_height() {
int i = 1;
int sum = 0;
while (this->size > sum + (1 << i)) {
sum += (1 << i);
i++;
}
return i;
}
void swap_node(Node *first, Node *second) {
int key = first->key;
first->key = second->key;
second->key = key;
}
//Arrange node key
void arrange_node(Node *root) {
if (root->left != NULL && root->left->key > root->key) {
this->swap_node(root, root->left);
}
if (root->right != NULL && root->right->key > root->key) {
this->swap_node(root, root->right);
}
}
bool add_node(Node *root, int height, int level, Node *newNode) {
if (level >= height) {
return false;
}
if (root != NULL) {
if (level - 1 == height && root->left == NULL || root->right == NULL) {
if (root->left == NULL) {
root->left = newNode;
} else {
root->right = newNode;
}
this->arrange_node(root);
return true;
}
if (this->add_node(root->left, height, level + 1, newNode) || this->add_node(root->right, height, level + 1, newNode)) {
//Check effect of new inserted node
this->arrange_node(root);
return true;
}
}
return false;
}
//Handles the request to new inserting node
void insert(int key) {
if (this->root == NULL) {
this->root = new Node(key);
} else
if (this->root->left == NULL) {
this->root->left = new Node(key);
this->arrange_node(this->root);
} else
if (this->root->right == NULL) {
this->root->right = new Node(key);
this->arrange_node(this->root);
} else {
int height = this->insert_height();
Node *newNode = new Node(key);
}
this->size++;
}
Node *combine(MaxHeap first, MaxHeap second, Node *root) {
if (root != NULL) {
root->left = this->combine(first, second, root->left);
root->right = this->combine(first, second, root->right);
if (root->left == NULL && root->right == NULL) {
int height = first.insert_height();
first.size++;
second.size--;
return NULL;
}
}
return root;
}
void merge(MaxHeap heap2) {
if (this->root != NULL && heap2.root != NULL) {
if (this->size > heap2.size) {
cout << "\n\n Merging of heap 2 in heap 1 ";
//add node element in first tree
heap2.root = this->combine(*this, heap2, heap2.root);
} else {
cout << "\n\n Merging of heap 1 in heap 2 ";
//add node element in second tree
this->root = this->combine(heap2, *this, this->root);
}
}
}
void preorder(Node *root) {
if (root != NULL) {
cout << " " << root->key;
this->preorder(root->left);
this->preorder(root->right);
}
}
void inorder(Node *root) {
if (root != NULL) {
this->inorder(root->left);
cout << " " << root->key;
this->inorder(root->right);
}
}
void postorder(Node *root) {
if (root != NULL) {
this->postorder(root->left);
this->postorder(root->right);
cout << " " << root->key;
}
}
void print_nodes() {
cout << "\nPreorder : \n";
this->preorder(this->root);
cout << "\nInorder : \n";
this->inorder(this->root);
cout << "\nPostorder : \n";
this->postorder(this->root);
}
};
int main() {
MaxHeap heap1 = MaxHeap();
//Construct first Max heap tree
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);
/*After insert element*/
/*
14
/    \
13     12
/  \    /
8   11 10

Preorder :
14  13  8  11  12  10
Inorder :
8  13  11  14  10  12
Postorder :
8  11  13  10  12  14

*/
MaxHeap heap2 = MaxHeap();
//Construct second max heap tree

for (int i = 7; i > 0; i--) {
heap2.insert(i);
}
/*After insert element*/
/*
7
/    \
/      \
6        5
/   \     /  \
4     3   2    1

Preorder :
7  6  4  3  5  2  1
Inorder :
4  6  3  7  2  5  1
Postorder :
4  3  6  2  1  5  7

*/

cout << "First heap element : \n";
heap1.print_nodes();
cout << "\n\nSecond heap element : \n";
heap2.print_nodes();
heap1.merge(heap2);
cout << "\n After Merges ";
/*After Merge element*/
/*
14
/       \
/         \
11           13
/   \         /  \
7     10      12    1
/ \    / \    /  \
4   6  3   8  2    5

Preorder :
14  11  7  4  6  10  3  8  13  12  2  5  1
Inorder :
4  7  6  11  3  10  8  14  2  12  5  13  1
Postorder :
4  6  7  3  8  10  11  2  5  12  1  13  14
*/

if (heap1.root != NULL) {
cout << "\n\nFirst heap element : ";
heap1.print_nodes();
}
if (heap2.root != NULL) {
cout << "\n\nSecond heap element : \n";
heap2.print_nodes();
}
return 0;
}```
```

#### Output

``````First heap element :

Preorder :
14 13 8 11 12 10
Inorder :
8 13 11 14 10 12
Postorder :
8 11 13 10 12 14

Second heap element :

Preorder :
7 6 4 3 5 2 1
Inorder :
4 6 3 7 2 5 1
Postorder :
4 3 6 2 1 5 7

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
14 11 7 4 6 10 3 8 13 12 2 5 1
Inorder :
4 7 6 11 3 10 8 14 2 12 5 13 1
Postorder :
4 6 7 3 8 10 11 2 5 12 1 13 14``````
``````/*
Java program
Merge two Binary Max Heap Tree
*/
//Tree node
class Node
{
//Left and right child
public Node left;
public Node right;

//Data value
public int key;

public Node(int key)
{
this.key = key;

left = null;
right = null;
}
}
public class MaxHeap
{
//This is use to store information of number of nodes in Max heap
public int size;

public Node root;

public MaxHeap()
{
root = null;

size = 0;
}

//Get height of insert new node
public int insert_height()
{
int i=1;

int sum=0;

while(this.size > sum+(1<<i) )
{
sum += (1<<i);
i++;
}
return i;
}
public  void swap_node(Node first,Node second)
{
int data = first.key;

first.key = second.key;
second.key = data;
}
//Arrange node key
public void arrange_node(Node root)
{

if(root.left!=null && root.left.key > root.key)
{
swap_node(root,root.left);
}
if(root.right!=null && root.right.key > root.key)
{
swap_node(root,root.right);
}
}
public boolean  add_node(Node root, int height ,int level,Node newNode)
{
if(level >= height )
{
return false;
}
if(root != null)
{

if(level-1 == height && root.left == null || root.right == null)
{
if(root.left==null)
{
root.left=newNode;
}
else
{
root.right=newNode;
}

arrange_node(root);

return true;
}

{
//Check effect of new inserted node
arrange_node(root);

return true;
}

}
return false;
}
//Handles the request to new inserting node
public void insert(int key)
{

if(root==null)
{
root=new Node(key);
}
else if(root.left==null)
{
root.left = new Node(key);
arrange_node(root);

}
else if(root.right==null)
{
root.right = new Node(key);
arrange_node(root);
}
else
{
int height = insert_height();
Node newNode=new Node(key);
}
this.size++;
}
public Node combine(MaxHeap first,MaxHeap second ,Node root)
{

if(root!=null)
{
root.left=combine(first,second,root.left);
root.right=combine(first,second,root.right);

if(root.left==null && root.right==null)
{

int height = first.insert_height();
first.size++;
second.size--;
return null;
}
}
return root;
}
public void merge(MaxHeap heap2)
{

if(this.root !=null && heap2.root!=null)
{
if(this.size>heap2.size)
{
System.out.print("\n\n Merging of heap 2 in heap 1 ");
//add node element in first tree
heap2.root=combine(this,heap2,heap2.root);
}
else
{
System.out.print("\n\n Merging of heap 1 in heap 2 ");
//add node element in second tree
this.root=combine(heap2,this,this.root);
}
}
}

public void preorder(Node root)
{
if(root!=null)
{
System.out.print("  "+root.key);
preorder(root.left);

preorder(root.right);
}
}
public void inorder(Node root)
{
if(root!=null)
{

inorder(root.left);
System.out.print("  "+root.key);
inorder(root.right);
}
}

public void postorder(Node root)
{
if(root!=null)
{

postorder(root.left);

postorder(root.right);
System.out.print("  "+root.key);
}
}
public void print_nodes()
{
System.out.print("\nPreorder : \n" );
preorder(this.root);
System.out.print("\nInorder : \n" );
inorder(this.root);
System.out.print("\nPostorder : \n" );
postorder(this.root);
}

public static void main(String[] args)
{

MaxHeap heap1= new MaxHeap();

//Construct first Max heap tree
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);

/*After insert element*/

/*
14
/    \
13     12
/  \    /
8   11 10

Preorder :
14  13  8  11  12  10
Inorder :
8  13  11  14  10  12
Postorder :
8  11  13  10  12  14

*/

MaxHeap heap2 = new MaxHeap();

//Construct second max heap tree
int i = 7;
while (i > 0) {
heap2.insert(i);
i--;
}

/*After insert element*/

/*
7
/    \
/      \
6        5
/   \     /  \
4     3   2    1

Preorder :
7  6  4  3  5  2  1
Inorder :
4  6  3  7  2  5  1
Postorder :
4  3  6  2  1  5  7

*/

System.out.print("First heap element : \n" );

heap1.print_nodes();

System.out.print("\n\nSecond heap element : \n" );
heap2.print_nodes();

heap1.merge(heap2);

System.out.print("\n  After Merges ");

/*After Merge element*/

/*
14
/       \
/         \
11           13
/   \         /  \
7     10      12    1
/ \    / \    /  \
4   6  3   8  2    5

Preorder :
14  11  7  4  6  10  3  8  13  12  2  5  1
Inorder :
4  7  6  11  3  10  8  14  2  12  5  13  1
Postorder :
4  6  7  3  8  10  11  2  5  12  1  13  14
*/
if(heap1.root!=null)
{
System.out.print("\n\nFirst heap element : " );
heap1.print_nodes();
}
if(heap2.root!=null)
{
System.out.print("\n\nSecond heap element : \n" );
heap2.print_nodes();
}

}
}```
```

#### Output

``````First heap element :

Preorder :
14  13  8  11  12  10
Inorder :
8  13  11  14  10  12
Postorder :
8  11  13  10  12  14

Second heap element :

Preorder :
7  6  4  3  5  2  1
Inorder :
4  6  3  7  2  5  1
Postorder :
4  3  6  2  1  5  7

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
14  11  7  4  6  10  3  8  13  12  2  5  1
Inorder :
4  7  6  11  3  10  8  14  2  12  5  13  1
Postorder :
4  6  7  3  8  10  11  2  5  12  1  13  14``````
``````/*
C# program
Merge two Binary Max Heap Tree
*/
//Tree node
using System;
public class Node {
//Left and right child
public Node left;
public Node right;
//Data value
public int key;
public Node(int key) {
this.key = key;
left = null;
right = null;
}
}
public class MaxHeap {
//This is use to store information of number of nodes in Max heap
public int size;
public Node root;
public MaxHeap() {
root = null;
size = 0;
}
//Get height of insert new node
public int insert_height() {
int i = 1;
int sum = 0;
while (this.size > sum + (1 << i)) {
sum += (1 << i);
i++;
}
return i;
}
public void swap_node(Node first, Node second) {
int data = first.key;
first.key = second.key;
second.key = data;
}
//Arrange node key
public void arrange_node(Node root) {
if (root.left != null && root.left.key > root.key) {
swap_node(root, root.left);
}
if (root.right != null && root.right.key > root.key) {
swap_node(root, root.right);
}
}
public Boolean add_node(Node root, int height, int level, Node newNode) {
if (level >= height) {
return false;
}
if (root != null) {
if (level - 1 == height && root.left == null || root.right == null) {
if (root.left == null) {
root.left = newNode;
} else {
root.right = newNode;
}
arrange_node(root);
return true;
}
if (add_node(root.left, height, level + 1, newNode) ||
add_node(root.right, height, level + 1, newNode)) {
arrange_node(root);
return true;
}
}
return false;
}
//Handles the request to new inserting node
public void insert(int key) {
if (root == null) {
root = new Node(key);
} else
if (root.left == null) {
root.left = new Node(key);
arrange_node(root);
} else
if (root.right == null) {
root.right = new Node(key);
arrange_node(root);
} else {
int height = insert_height();
Node newNode = new Node(key);
}
this.size++;
}
public Node combine(MaxHeap first, MaxHeap second, Node root) {
if (root != null) {
root.left = combine(first, second, root.left);
root.right = combine(first, second, root.right);
if (root.left == null && root.right == null) {
int height = first.insert_height();
first.size++;
second.size--;
return null;
}
}
return root;
}
public void merge(MaxHeap heap2) {
if (this.root != null && heap2.root != null) {
if (this.size > heap2.size) {
Console.Write("\n\n Merging of heap 2 in heap 1 ");
//add node element in first tree
heap2.root = combine(this, heap2, heap2.root);
} else {
Console.Write("\n\n Merging of heap 1 in heap 2 ");
//add node element in second tree
this.root = combine(heap2, this, this.root);
}
}
}
public void preorder(Node root) {
if (root != null) {
Console.Write(" " + root.key);
preorder(root.left);
preorder(root.right);
}
}
public void inorder(Node root) {
if (root != null) {
inorder(root.left);
Console.Write(" " + root.key);
inorder(root.right);
}
}
public void postorder(Node root) {
if (root != null) {
postorder(root.left);
postorder(root.right);
Console.Write(" " + root.key);
}
}
public void print_nodes() {
Console.Write("\nPreorder : \n");
preorder(this.root);
Console.Write("\nInorder : \n");
inorder(this.root);
Console.Write("\nPostorder : \n");
postorder(this.root);
}
public static void Main(String[] args) {
MaxHeap heap1 = new MaxHeap();
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);
/*After insert element*/
/*
14
/    \
13     12
/  \    /
8   11 10

Preorder :
14  13  8  11  12  10
Inorder :
8  13  11  14  10  12
Postorder :
8  11  13  10  12  14

*/
MaxHeap heap2 = new MaxHeap();
//Construct second max heap tree

for (int i = 7; i > 0; i--) {
heap2.insert(i);
}
Console.Write("First heap element : \n");
heap1.print_nodes();
Console.Write("\n\nSecond heap element : \n");
heap2.print_nodes();
heap1.merge(heap2);
Console.Write("\n After Merges ");
/*After Merge element*/
/*
14
/       \
/         \
11           13
/   \         /  \
7     10      12    1
/ \    / \    /  \
4   6  3   8  2    5

Preorder :
14  11  7  4  6  10  3  8  13  12  2  5  1
Inorder :
4  7  6  11  3  10  8  14  2  12  5  13  1
Postorder :
4  6  7  3  8  10  11  2  5  12  1  13  14
*/

if (heap1.root != null) {
Console.Write("\n\nFirst heap element : ");
heap1.print_nodes();
}
if (heap2.root != null) {
Console.Write("\n\nSecond heap element : \n");
heap2.print_nodes();
}
}
}```
```

#### Output

``````First heap element :

Preorder :
14 13 8 11 12 10
Inorder :
8 13 11 14 10 12
Postorder :
8 11 13 10 12 14

Second heap element :

Preorder :
7 6 4 3 5 2 1
Inorder :
4 6 3 7 2 5 1
Postorder :
4 3 6 2 1 5 7

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
14 11 7 4 6 10 3 8 13 12 2 5 1
Inorder :
4 7 6 11 3 10 8 14 2 12 5 13 1
Postorder :
4 6 7 3 8 10 11 2 5 12 1 13 14``````
``````<?php
/*
Php program
Merge two Binary Max Heap Tree
*/
//Tree node
class Node {
//Left and right child

public \$left;
public \$right;
//Data value

public \$key;

function __construct(\$key) {
\$this->key = \$key;
\$this->left = null;
\$this->right = null;
}
}
class MaxHeap {
//This is use to store information of number of nodes in Max heap

public \$size;
public \$root;

function __construct() {
\$this->root = null;
\$this->size = 0;
}
//Get height of insert new node

public 	function insert_height() {
\$i = 1;
\$sum = 0;
while (\$this->size > \$sum + (1 << \$i)) {
\$sum += (1 << \$i);
\$i++;
}
return \$i;
}
public 	function swap_node(\$first, \$second) {
\$data = \$first->key;
\$first->key = \$second->key;
\$second->key = \$data;
}
//Arrange node key

public 	function arrange_node(\$root) {
if (\$root->left != null && \$root->left->key > \$root->key) {
\$this->swap_node(\$root, \$root->left);
}
if (\$root->right != null && \$root->right->key > \$root->key) {
\$this->swap_node(\$root, \$root->right);
}
}
public 	function add_node(\$root, \$height, \$level, \$newNode) {
if (\$level >= \$height) {
return false;
}
if (\$root != null) {
if (\$level - 1 == \$height && \$root->left == null || \$root->right == null) {
if (\$root->left == null) {
\$root->left = \$newNode;
} else {
\$root->right = \$newNode;
}
\$this->arrange_node(\$root);
return true;
}
if (\$this->add_node(\$root->left, \$height, \$level + 1, \$newNode) || \$this->add_node(\$root->right, \$height, \$level + 1, \$newNode)) {
//Check effect of new inserted node
\$this->arrange_node(\$root);
return true;
}
}
return false;
}
//Handles the request to new inserting node

public 	function insert(\$key) {
if (\$this->root == null) {
\$this->root = new Node(\$key);
} else
if (\$this->root->left == null) {
\$this->root->left = new Node(\$key);
\$this->arrange_node(\$this->root);
} else
if (\$this->root->right == null) {
\$this->root->right = new Node(\$key);
\$this->arrange_node(\$this->root);
} else {
\$height = \$this->insert_height();
\$newNode = new Node(\$key);
}
\$this->size++;
}
public 	function combine(\$first, \$second, \$root) {
if (\$root != null) {
\$root->left = \$this->combine(\$first, \$second, \$root->left);
\$root->right = \$this->combine(\$first, \$second, \$root->right);
if (\$root->left == null && \$root->right == null) {
\$height =
\$first->insert_height();
\$first->size++;
\$second->size--;
return null;
}
}
return \$root;
}
public 	function merge(\$heap2) {
if (\$this->root != null && \$heap2->root != null) {
if (\$this->size > \$heap2->size) {
echo("\n\n Merging of heap 2 in heap 1 ");
//add node element in first tree
\$heap2->root = \$this->combine(\$this, \$heap2, \$heap2->root);
} else {
echo("\n\n Merging of heap 1 in heap 2 ");
//add node element in second tree
\$this->root = \$this->combine(\$heap2, \$this, \$this->root);
}
}
}
public 	function preorder(\$root) {
if (\$root != null) {
echo(" ". \$root->key);
\$this->preorder(\$root->left);
\$this->preorder(\$root->right);
}
}
public 	function inorder(\$root) {
if (\$root != null) {
\$this->inorder(\$root->left);
echo(" ". \$root->key);
\$this->inorder(\$root->right);
}
}
public 	function postorder(\$root) {
if (\$root != null) {
\$this->postorder(\$root->left);
\$this->postorder(\$root->right);
echo(" ". \$root->key);
}
}
public 	function print_nodes() {
echo("\nPreorder : \n");
\$this->preorder(\$this->root);
echo("\nInorder : \n");
\$this->inorder(\$this->root);
echo("\nPostorder : \n");
\$this->postorder(\$this->root);
}
}

function main() {
\$heap1 = new MaxHeap();
//Construct first Max heap tree

\$heap1->insert(8);
\$heap1->insert(10);
\$heap1->insert(14);
\$heap1->insert(13);
\$heap1->insert(11);
\$heap1->insert(12);
/*After insert element*/
/*
14
/    \
13     12
/  \    /
8   11 10

Preorder :
14  13  8  11  12  10
Inorder :
8  13  11  14  10  12
Postorder :
8  11  13  10  12  14

*/
\$heap2 = new MaxHeap();
//Construct second max heap tree

for (\$i = 7; \$i > 0; \$i--) {
\$heap2->insert(\$i);
}
/*After insert element*/
/*
7
/    \
/      \
6        5
/   \     /  \
4     3   2    1

Preorder :
7  6  4  3  5  2  1
Inorder :
4  6  3  7  2  5  1
Postorder :
4  3  6  2  1  5  7

*/

echo("First heap element : \n");
\$heap1->print_nodes();
echo("\n\nSecond heap element : \n");
\$heap2->print_nodes();
\$heap1->merge(\$heap2);
echo("\n After Merges ");
/*After Merge element*/
/*
14
/       \
/         \
11           13
/   \         /  \
7     10      12    1
/ \    / \    /  \
4   6  3   8  2    5

Preorder :
14  11  7  4  6  10  3  8  13  12  2  5  1
Inorder :
4  7  6  11  3  10  8  14  2  12  5  13  1
Postorder :
4  6  7  3  8  10  11  2  5  12  1  13  14
*/

if (\$heap1->root != null) {
echo("\n\nFirst heap element : ");
\$heap1->print_nodes();
}
if (\$heap2->root != null) {
echo("\n\nSecond heap element : \n");
\$heap2->print_nodes();
}

}
main();```
```

#### Output

``````First heap element :

Preorder :
14 13 8 11 12 10
Inorder :
8 13 11 14 10 12
Postorder :
8 11 13 10 12 14

Second heap element :

Preorder :
7 6 4 3 5 2 1
Inorder :
4 6 3 7 2 5 1
Postorder :
4 3 6 2 1 5 7

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
14 11 7 4 6 10 3 8 13 12 2 5 1
Inorder :
4 7 6 11 3 10 8 14 2 12 5 13 1
Postorder :
4 6 7 3 8 10 11 2 5 12 1 13 14``````
``````/*
Node Js program
Merge two Binary Max Heap Tree
*/
//Tree node
class Node {

constructor(key) {
this.key = key;
this.left = null;
this.right = null;
}
}
class MaxHeap {

constructor() {
this.root = null;
//This is use to store information of number of nodes in Max heap
this.size = 0;
}

//Get height of insert new node
insert_height() {
var i = 1;
var sum = 0;
while (this.size > sum + (1 << i)) {
sum += (1 << i);
i++;
}

return i;
}
swap_node(first, second) {
var data = first.key;
first.key = second.key;
second.key = data;
}

//Arrange node key
arrange_node(root) {
if (root.left != null && root.left.key > root.key) {
this.swap_node(root, root.left);
}

if (root.right != null && root.right.key > root.key) {
this.swap_node(root, root.right);
}
}
if (level >= height) {
return false;
}

if (root != null) {
if (level - 1 == height && root.left == null || root.right == null) {
if (root.left == null) {
root.left = newNode;
} else {
root.right = newNode;
}
this.arrange_node(root);
return true;
}

if (this.add_node(root.left, height, level + 1, newNode) || this.add_node(root.right, height, level + 1, newNode)) {
//Check effect of new inserted node
this.arrange_node(root);
return true;
}
}

return false;
}

//Handles the request to new inserting node
insert(key) {
if (this.root == null) {
this.root = new Node(key);
} else
if (this.root.left == null) {
this.root.left = new Node(key);
this.arrange_node(this.root);
} else
if (this.root.right == null) {
this.root.right = new Node(key);
this.arrange_node(this.root);
} else {
var height = this.insert_height();
var newNode = new Node(key);
}
this.size++;
}
combine(first, second, root) {
if (root != null) {
root.left = this.combine(first, second, root.left);
root.right = this.combine(first, second, root.right);
if (root.left == null && root.right == null) {
var height = first.insert_height();
first.size++;
second.size--;
return null;
}
}

return root;
}
merge(heap2) {
if (this.root != null && heap2.root != null) {
if (this.size > heap2.size) {
process.stdout.write("\n\n Merging of heap 2 in heap 1 ");
//add node element in first tree
heap2.root = this.combine(this, heap2, heap2.root);
} else {
process.stdout.write("\n\n Merging of heap 1 in heap 2 ");
//add node element in second tree
this.root = this.combine(heap2, this, this.root);
}
}
}
preorder(root) {
if (root != null) {
process.stdout.write(" " + root.key);
this.preorder(root.left);
this.preorder(root.right);
}
}
inorder(root) {
if (root != null) {
this.inorder(root.left);
process.stdout.write(" " + root.key);
this.inorder(root.right);
}
}
postorder(root) {
if (root != null) {
this.postorder(root.left);
this.postorder(root.right);
process.stdout.write(" " + root.key);
}
}
print_nodes() {
process.stdout.write("\nPreorder : \n");
this.preorder(this.root);
process.stdout.write("\nInorder : \n");
this.inorder(this.root);
process.stdout.write("\nPostorder : \n");
this.postorder(this.root);
}
}

function main(args) {
var heap1 = new MaxHeap();
//Construct first Max heap tree
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);
/*After insert element*/
/*
14
/    \
13     12
/  \    /
8   11 10

Preorder :
14  13  8  11  12  10
Inorder :
8  13  11  14  10  12
Postorder :
8  11  13  10  12  14

*/
var heap2 = new MaxHeap();
//Construct second max heap tree

for (var i = 7; i > 0; i--) {
heap2.insert(i);
}

/*After insert element*/
/*
7
/    \
/      \
6        5
/   \     /  \
4     3   2    1

Preorder :
7  6  4  3  5  2  1
Inorder :
4  6  3  7  2  5  1
Postorder :
4  3  6  2  1  5  7

*/

process.stdout.write("First heap element : \n");
heap1.print_nodes();
process.stdout.write("\n\nSecond heap element : \n");
heap2.print_nodes();
heap1.merge(heap2);
process.stdout.write("\n After Merges ");
/*After Merge element*/
/*
14
/       \
/         \
11           13
/   \         /  \
7     10      12    1
/ \    / \    /  \
4   6  3   8  2    5

Preorder :
14  11  7  4  6  10  3  8  13  12  2  5  1
Inorder :
4  7  6  11  3  10  8  14  2  12  5  13  1
Postorder :
4  6  7  3  8  10  11  2  5  12  1  13  14
*/

if (heap1.root != null) {
process.stdout.write("\n\nFirst heap element : ");
heap1.print_nodes();
}

if (heap2.root != null) {
process.stdout.write("\n\nSecond heap element : \n");
heap2.print_nodes();
}
}

main();```
```

#### Output

``````First heap element :

Preorder :
14 13 8 11 12 10
Inorder :
8 13 11 14 10 12
Postorder :
8 11 13 10 12 14

Second heap element :

Preorder :
7 6 4 3 5 2 1
Inorder :
4 6 3 7 2 5 1
Postorder :
4 3 6 2 1 5 7

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
14 11 7 4 6 10 3 8 13 12 2 5 1
Inorder :
4 7 6 11 3 10 8 14 2 12 5 13 1
Postorder :
4 6 7 3 8 10 11 2 5 12 1 13 14``````
``````#  Python 3 program
#  Merge two Binary Max Heap Tree

# Tree node

class Node :
# Left and right child  # Data value
def __init__(self, key) :
self.key = key
self.left = None
self.right = None

class MaxHeap :
# This is use to store information of number of nodes in Max heap
def __init__(self) :
self.root = None
self.size = 0
# Get height of insert new node
def insert_height(self) :
i = 1
sum = 0
while (self.size > sum + (1 << i)) :
sum += (1 << i)
i += 1

return i

def swap_node(self, first, second) :
data = first.key
first.key = second.key
second.key = data
# Arrange node key
def arrange_node(self, root) :
if (root.left != None and root.left.key > root.key) :
self.swap_node(root, root.left)

if (root.right != None and root.right.key > root.key) :
self.swap_node(root, root.right)

def add_node(self, root, height, level, newNode) :
if (level >= height) :
return False

if (root != None) :
if (level - 1 == height and root.left == None or root.right == None) :
if (root.left == None) :
root.left = newNode
else :
root.right = newNode

self.arrange_node(root)
return True

if (self.add_node(root.left, height, level + 1, newNode) or
self.add_node(root.right, height, level + 1, newNode)) :
# Check effect of new inserted node
self.arrange_node(root)
return True

return False
# Handles the request to new inserting node
def insert(self, key) :
if (self.root == None) :
self.root = Node(key)
elif (self.root.left == None) :
self.root.left = Node(key)
self.arrange_node(self.root)
elif (self.root.right == None) :
self.root.right = Node(key)
self.arrange_node(self.root)
else :
height = self.insert_height()
newNode = Node(key)

self.size += 1

def combine(self, first, second, root) :
if (root != None) :
root.left = self.combine(first, second, root.left)
root.right = self.combine(first, second, root.right)
if (root.left == None and root.right == None) :
height = first.insert_height() # add node in first tree
first.size += 1
second.size -= 1
return None

return root

def merge(self, heap2) :
if (self.root != None and heap2.root != None) :
if (self.size > heap2.size) :
print("\n\n Merging of heap 2 in heap 1 ", end = "")
# add node element in first tree
heap2.root = self.combine(self, heap2, heap2.root)
else :
print("\n\n Merging of heap 1 in heap 2 ", end = "")
# add node element in second tree
self.root = self.combine(heap2, self, self.root)

def preorder(self, root) :
if (root != None) :
print(" ", root.key, end = "")
self.preorder(root.left)
self.preorder(root.right)

def inorder(self, root) :
if (root != None) :
self.inorder(root.left)
print(" ", root.key, end = "")
self.inorder(root.right)

def postorder(self, root) :
if (root != None) :
self.postorder(root.left)
self.postorder(root.right)
print(" ", root.key, end = "")

def print_nodes(self) :
print("\nPreorder : \n", end = "")
self.preorder(self.root)
print("\nInorder : \n", end = "")
self.inorder(self.root)
print("\nPostorder : \n", end = "")
self.postorder(self.root)

def main() :
heap1 = MaxHeap() # Construct first Max heap tree
heap1.insert(8)
heap1.insert(10)
heap1.insert(14)
heap1.insert(13)
heap1.insert(11)
heap1.insert(12)
#
#                 14
#               /    \
#              13     12
#            /  \    /
#           8   11 10
#
#      Preorder :
#        14  13  8  11  12  10
#      Inorder :
#        8  13  11  14  10  12
#      Postorder :
#        8  11  13  10  12  14
#

#After insert element

#
#                 14
#               /    \
#              13     12
#            /  \    /
#           8   11 10
#
#      Preorder :
#        14  13  8  11  12  10
#      Inorder :
#        8  13  11  14  10  12
#      Postorder :
#        8  11  13  10  12  14
#

heap2 = MaxHeap() # Construct second max heap tree
i = 7
while (i > 0) :
heap2.insert(i)
i -= 1

print("First heap element : \n", end = "")
heap1.print_nodes()
print("\n\nSecond heap element : \n", end = "")
heap2.print_nodes()
heap1.merge(heap2)
print("\n After Merges ", end = "")
#
#                   14
#               /       \
#              /         \
#             11           13
#           /   \         /  \
#          7     10      12    1
#         / \    / \    /  \
#        4   6  3   8  2    5
#      Preorder :
#        14  11  7  4  6  10  3  8  13  12  2  5  1
#      Inorder :
#        4  7  6  11  3  10  8  14  2  12  5  13  1
#      Postorder :
#        4  6  7  3  8  10  11  2  5  12  1  13  14
#

#After Merge element

#
#                   14
#               /       \
#              /         \
#             11           13
#           /   \         /  \
#          7     10      12    1
#         / \    / \    /  \
#        4   6  3   8  2    5
#      Preorder :
#        14  11  7  4  6  10  3  8  13  12  2  5  1
#      Inorder :
#        4  7  6  11  3  10  8  14  2  12  5  13  1
#      Postorder :
#        4  6  7  3  8  10  11  2  5  12  1  13  14
#

if (heap1.root != None) :
print("\n\nFirst heap element : ", end = "")
heap1.print_nodes()

if (heap2.root != None) :
print("\n\nSecond heap element : \n", end = "")
heap2.print_nodes()

if __name__ == "__main__":
main()```
```

#### Output

``````First heap element :

Preorder :
14  13  8  11  12  10
Inorder :
8  13  11  14  10  12
Postorder :
8  11  13  10  12  14

Second heap element :

Preorder :
7  6  4  3  5  2  1
Inorder :
4  6  3  7  2  5  1
Postorder :
4  3  6  2  1  5  7

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
14  11  7  4  6  10  3  8  13  12  2  5  1
Inorder :
4  7  6  11  3  10  8  14  2  12  5  13  1
Postorder :
4  6  7  3  8  10  11  2  5  12  1  13  14``````
``````#  Ruby program
#  Merge two Binary Max Heap Tree

# Tree node
class Node
# Define the accessor and reader of class Node
attr_accessor :left, :right, :key

def initialize(key)
self.key = key
@left = nil
@right = nil
end
end

class MaxHeap
# Define the accessor and reader of class MaxHeap
attr_accessor :size, :root
def initialize()
@root = nil
@size = 0
end
# Get height of insert new node
def insert_height()
i = 1
sum = 0
while (self.size > sum + (1 << i))
sum += (1 << i)
i += 1
end
return i
end
def swap_node(first, second)
data = first.key
first.key = second.key
second.key = data
end
# Arrange node key
def arrange_node(root)
if (root.left != nil && root.left.key > root.key)
self.swap_node(root, root.left)
end
if (root.right != nil && root.right.key > root.key)
self.swap_node(root, root.right)
end
end
if (level >= height)
return false
end
if (root != nil)
if (level - 1 == height && root.left == nil || root.right == nil)
if (root.left == nil)
root.left = newNode
else
root.right = newNode
end
self.arrange_node(root)
return true
end
if (self.add_node(root.left, height, level + 1, newNode) ||
self.add_node(root.right, height, level + 1, newNode))
# Check effect of new inserted node
self.arrange_node(root)
return true
end
end
return false
end
# Handles the request to new inserting node
def insert(key)
if (@root == nil)
@root = Node.new(key)
elsif (@root.left == nil)
@root.left = Node.new(key)
self.arrange_node(@root)
elsif (@root.right == nil)
@root.right = Node.new(key)
self.arrange_node(@root)
else
height = self.insert_height()
newNode = Node.new(key)
end
self.size += 1
end
def combine(first, second, root)
if (root != nil)
root.left = self.combine(first, second, root.left)
root.right = self.combine(first, second, root.right)
if (root.left == nil && root.right == nil)
height = first.insert_height()
# add node in first tree
first.size += 1
second.size -= 1
return nil
end
end
return root
end
def merge(heap2)
if (self.root != nil && heap2.root != nil)
if (self.size > heap2.size)
print("\n\n Merging of heap 2 in heap 1 ")
# add node element in first tree
heap2.root = self.combine(self, heap2, heap2.root)
else
print("\n\n Merging of heap 1 in heap 2 ")
# add node element in second tree
self.root = self.combine(heap2, self, self.root)
end
end
end
def preorder(root)
if (root != nil)
print(" ", root.key)
self.preorder(root.left)
self.preorder(root.right)
end
end
def inorder(root)
if (root != nil)
self.inorder(root.left)
print(" ", root.key)
self.inorder(root.right)
end
end
def postorder(root)
if (root != nil)
self.postorder(root.left)
self.postorder(root.right)
print(" ", root.key)
end
end
def print_nodes()
print("\nPreorder  :\n")
self.preorder(self.root)
print("\nInorder  :\n")
self.inorder(self.root)
print("\nPostorder  :\n")
self.postorder(self.root)
end
end
def main()
heap1 = MaxHeap.new()
# Construct first Max heap tree
heap1.insert(8)
heap1.insert(10)
heap1.insert(14)
heap1.insert(13)
heap1.insert(11)
heap1.insert(12)
#After insert element

#
#                 14
#               /    \
#              13     12
#            /  \    /
#           8   11 10
#
#      Preorder  :
#        14  13  8  11  12  10
#      Inorder  :
#        8  13  11  14  10  12
#      Postorder  :
#        8  11  13  10  12  14
#

heap2 = MaxHeap.new()
# Construct second max heap tree
i = 7
while (i > 0)
heap2.insert(i)
i -= 1
end
#After insert element

#
#                7
#             /    \
#            /      \
#           6        5
#         /   \     /  \
#        4     3   2    1
#    Preorder  :
#      7  6  4  3  5  2  1
#    Inorder  :
#      4  6  3  7  2  5  1
#    Postorder  :
#      4  3  6  2  1  5  7
#

print("First heap element  :\n")
heap1.print_nodes()
print("\n\nSecond heap element  :\n")
heap2.print_nodes()
heap1.merge(heap2)
print("\n After Merges ")
#After Merge element

#
#                   14
#               /       \
#              /         \
#             11           13
#           /   \         /  \
#          7     10      12    1
#         / \    / \    /  \
#        4   6  3   8  2    5
#      Preorder  :
#        14  11  7  4  6  10  3  8  13  12  2  5  1
#      Inorder  :
#        4  7  6  11  3  10  8  14  2  12  5  13  1
#      Postorder  :
#        4  6  7  3  8  10  11  2  5  12  1  13  14
#

if (heap1.root != nil)
print("\n\nFirst heap element  :")
heap1.print_nodes()
end
if (heap2.root != nil)
print("\n\nSecond heap element  :\n")
heap2.print_nodes()
end
end

main()```
```

#### Output

``````First heap element  :

Preorder  :
14 13 8 11 12 10
Inorder  :
8 13 11 14 10 12
Postorder  :
8 11 13 10 12 14

Second heap element  :

Preorder  :
7 6 4 3 5 2 1
Inorder  :
4 6 3 7 2 5 1
Postorder  :
4 3 6 2 1 5 7

Merging of heap 1 in heap 2
After Merges

Second heap element  :

Preorder  :
14 11 7 4 6 10 3 8 13 12 2 5 1
Inorder  :
4 7 6 11 3 10 8 14 2 12 5 13 1
Postorder  :
4 6 7 3 8 10 11 2 5 12 1 13 14``````
``````/*
Scala program
Merge two Binary Max Heap Tree
*/
//Tree node
class Node(var left: Node,
var right: Node,
var key: Int) {

def this(key: Int) {
this(null,null,key);
}
}
class MaxHeap(var size: Int,
var root: Node) {

def this() {
this(0,null);
}
//Get height of insert new node
def insert_height(): Int = {
var i: Int = 1;
var sum: Int = 0;
while (this.size > sum + (1 << i)) {
sum += (1 << i);
i += 1;
}
return i;
}
def swap_node(first: Node, second: Node): Unit = {
val data: Int = first.key;
first.key = second.key;
second.key = data;
}
//Arrange node key
def arrange_node(root: Node): Unit = {
if (root.left != null && root.left.key > root.key) {
this.swap_node(root, root.left);
}
if (root.right != null && root.right.key > root.key) {
this.swap_node(root, root.right);
}
}
def add_node(root: Node, height: Int, level: Int, newNode: Node): Boolean = {
if (level >= height) {
return false;
}
if (root != null) {
if (level - 1 == height && root.left == null || root.right == null) {
if (root.left == null) {
root.left = newNode;
} else {
root.right = newNode;
}
this.arrange_node(root);

return true;
}
if (this.add_node(root.left, height, level + 1, newNode) || this.add_node(root.right, height, level + 1, newNode)) {
//Check effect of new inserted node
this.arrange_node(root);

return true;
}
}
return false;
}
//Handles the request to new inserting node
def insert(key: Int): Unit = {
if (this.root == null) {
this.root = new Node(key);
} else
if (this.root.left == null) {
this.root.left = new Node(key);
this.arrange_node(this.root);
} else
if (this.root.right == null) {
this.root.right = new Node(key);
this.arrange_node(this.root);
} else {
var height: Int = this.insert_height();
var newNode: Node = new Node(key);
}
this.size += 1;
}
def combine(first: MaxHeap, second: MaxHeap, root: Node): Node = {
if (root != null) {
root.left = this.combine(first, second, root.left);
root.right = this.combine(first, second, root.right);

if (root.left == null && root.right == null) {
val height: Int = first.insert_height();

first.size += 1;
second.size -= 1;

return null;
}
}
return root;
}
def merge(heap2: MaxHeap): Unit = {
if (this.root != null && heap2.root != null) {
if (this.size > heap2.size) {
print("\n\n Merging of heap 2 in heap 1 ");

//add node element in first tree
heap2.root = this.combine(this, heap2, heap2.root);
} else {
print("\n\n Merging of heap 1 in heap 2 ");

//add node element in second tree
this.root = this.combine(heap2, this, this.root);
}
}
}
def preorder(root: Node): Unit = {
if (root != null) {
print(" " + root.key);
this.preorder(root.left);
this.preorder(root.right);
}
}
def inorder(root: Node): Unit = {
if (root != null) {
this.inorder(root.left);
print(" " + root.key);
this.inorder(root.right);
}
}
def postorder(root: Node): Unit = {
if (root != null) {
this.postorder(root.left);
this.postorder(root.right);
print(" " + root.key);
}
}
def print_nodes(): Unit = {
print("\nPreorder : \n");
this.preorder(this.root);
print("\nInorder : \n");
this.inorder(this.root);
print("\nPostorder : \n");
this.postorder(this.root);
}
}
object Main {
def main(args: Array[String]): Unit = {
val heap1: MaxHeap = new MaxHeap();

//Construct first Max heap tree
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);

/*After insert element*/
/*
14
/    \
13     12
/  \    /
8   11 10

Preorder :
14  13  8  11  12  10
Inorder :
8  13  11  14  10  12
Postorder :
8  11  13  10  12  14

*/
var heap2: MaxHeap = new MaxHeap();

//Construct second max heap tree
var i: Int = 7;
while (i > 0) {
heap2.insert(i);
i -= 1;
}
/*After insert element*/
/*
7
/    \
/      \
6        5
/   \     /  \
4     3   2    1

Preorder :
7  6  4  3  5  2  1
Inorder :
4  6  3  7  2  5  1
Postorder :
4  3  6  2  1  5  7

*/
print("First heap element : \n");
heap1.print_nodes();
print("\n\nSecond heap element : \n");
heap2.print_nodes();
heap1.merge(heap2);
print("\n After Merges ");

/*After Merge element*/
/*
14
/       \
/         \
11           13
/   \         /  \
7     10      12    1
/ \    / \    /  \
4   6  3   8  2    5

Preorder :
14  11  7  4  6  10  3  8  13  12  2  5  1
Inorder :
4  7  6  11  3  10  8  14  2  12  5  13  1
Postorder :
4  6  7  3  8  10  11  2  5  12  1  13  14
*/

if (heap1.root != null) {
print("\n\nFirst heap element : ");
heap1.print_nodes();
}
if (heap2.root != null) {
print("\n\nSecond heap element : \n");
heap2.print_nodes();
}
}
}```
```

#### Output

``````First heap element :

Preorder :
14 13 8 11 12 10
Inorder :
8 13 11 14 10 12
Postorder :
8 11 13 10 12 14

Second heap element :

Preorder :
7 6 4 3 5 2 1
Inorder :
4 6 3 7 2 5 1
Postorder :
4 3 6 2 1 5 7

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
14 11 7 4 6 10 3 8 13 12 2 5 1
Inorder :
4 7 6 11 3 10 8 14 2 12 5 13 1
Postorder :
4 6 7 3 8 10 11 2 5 12 1 13 14``````
``````/*
Swift program
Merge two Binary Max Heap Tree
*/
//Tree node
class Node {

//Left and right child
var	left : Node?;
var right : Node?;
//Data value
var	key : Int;
init(_ key: Int) {
self.key = key;
self.left = nil;
self.right = nil;
}
}
class MaxHeap {

//This is use to store information of number of nodes in Max heap
var	size : Int;
var root : Node?;
init() {
self.root = nil;
self.size = 0;
}
//Get height of insert new node
func insert_height() -> Int {
var i = 1;
var sum = 0;
while (self.size > sum + (1 << i)) {
sum += (1 << i);
i += 1;
}
return i;
}
func swap_node(_ first: Node?, _ second: Node?) {
let data = first!.key;
first!.key = second!.key;
second!.key = data;
}
//Arrange node key
func arrange_node(_ root: Node?) {
if (root!.left != nil && root!.left!.key > root!.key) {
self.swap_node(root, root!.left);
}
if (root!.right != nil && root!.right!.key > root!.key) {
self.swap_node(root, root!.right);
}
}
func add_node(_ root: Node?, _ height: Int, _ level: Int, _ newNode: Node?) -> Bool {
if (level >= height) {
return false;
}
if (root != nil) {
if (level - 1 == height && root!.left == nil || root!.right == nil) {
if (root!.left == nil) {
root!.left = newNode;
} else {
root!.right = newNode;
}
self.arrange_node(root);
return true;
}
if (self.add_node(root!.left, height, level + 1, newNode) ||
self.add_node(root!.right, height, level + 1, newNode)) {
//Check effect of new inserted node
self.arrange_node(root);
return true;
}
}
return false;
}
//Handles the request to new inserting node
func insert(_ key: Int) {
if (self.root == nil) {
self.root = Node(key);
} else
if (self.root!.left == nil) {
self.root!.left = Node(key);
self.arrange_node(self.root);
} else
if (self.root!.right == nil) {
self.root!.right = Node(key);
self.arrange_node(self.root);
} else {
let height = self.insert_height();
let newNode = Node(key);
let _ = self.add_node(self.root, height, 0, newNode);
}
self.size += 1;
}
func combine(_ first: MaxHeap, _ second: MaxHeap, _ root: Node?) -> Node? {
if (root != nil) {
root!.left = self.combine(first, second, root!.left);
root!.right = self.combine(first, second, root!.right);
if (root!.left == nil && root!.right == nil) {
let height = first.insert_height();
let _ = self.add_node(first.root, height, 0, root);
first.size += 1;
second.size -= 1;
return nil;
}
}
return root;
}
func merge(_ heap2: MaxHeap) {
if (self.root != nil && heap2.root != nil) {
if (self.size > heap2.size) {
print("\n\n Merging of heap 2 in heap 1 ", terminator: "");
//add node element in first tree
heap2.root = self.combine(self, heap2, heap2.root);
} else {
print("\n\n Merging of heap 1 in heap 2 ", terminator: "");
//add node element in second tree
self.root = self.combine(heap2, self, self.root);
}
}
}
func preorder(_ root: Node?) {
if (root != nil) {
print(" ", root!.key, terminator: "");
self.preorder(root!.left);
self.preorder(root!.right);
}
}
func inorder(_ root: Node?) {
if (root != nil) {
self.inorder(root!.left);
print(" ", root!.key, terminator: "");
self.inorder(root!.right);
}
}
func postorder(_ root: Node?) {
if (root != nil) {
self.postorder(root!.left);
self.postorder(root!.right);
print(" ", root!.key, terminator: "");
}
}
func print_nodes() {
print("\nPreorder : \n", terminator: "");
self.preorder(self.root);
print("\nInorder : \n", terminator: "");
self.inorder(self.root);
print("\nPostorder : \n", terminator: "");
self.postorder(self.root);
}
}
func main() {
let heap1 = MaxHeap();
//Construct first Max heap tree
heap1.insert(8);
heap1.insert(10);
heap1.insert(14);
heap1.insert(13);
heap1.insert(11);
heap1.insert(12);
/*After insert element*/
/*
14
/    \
13     12
/  \    /
8   11 10

Preorder :
14  13  8  11  12  10
Inorder :
8  13  11  14  10  12
Postorder :
8  11  13  10  12  14

*/
let heap2 = MaxHeap();
//Construct second max heap tree
var i = 7;
while (i > 0) {
heap2.insert(i);
i -= 1;
}
print("First heap element : \n", terminator: "");
heap1.print_nodes();
print("\n\nSecond heap element : \n", terminator: "");
heap2.print_nodes();
heap1.merge(heap2);
print("\n After Merges ", terminator: "");
/*After Merge element*/
/*
14
/       \
/         \
11           13
/   \         /  \
7     10      12    1
/ \    / \    /  \
4   6  3   8  2    5

Preorder :
14  11  7  4  6  10  3  8  13  12  2  5  1
Inorder :
4  7  6  11  3  10  8  14  2  12  5  13  1
Postorder :
4  6  7  3  8  10  11  2  5  12  1  13  14
*/

if (heap1.root != nil) {
print("\n\nFirst heap element : ", terminator: "");
heap1.print_nodes();
}
if (heap2.root != nil) {
print("\n\nSecond heap element : \n", terminator: "");
heap2.print_nodes();
}
}
main();```
```

#### Output

``````First heap element :

Preorder :
14  13  8  11  12  10
Inorder :
8  13  11  14  10  12
Postorder :
8  11  13  10  12  14

Second heap element :

Preorder :
7  6  4  3  5  2  1
Inorder :
4  6  3  7  2  5  1
Postorder :
4  3  6  2  1  5  7

Merging of heap 1 in heap 2
After Merges

Second heap element :

Preorder :
14  11  7  4  6  10  3  8  13  12  2  5  1
Inorder :
4  7  6  11  3  10  8  14  2  12  5  13  1
Postorder :
4  6  7  3  8  10  11  2  5  12  1  13  14``````

## Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.