Maximum sum path in a Matrix
Given a matrix of integers, the task is to find a path from the top-left corner to the bottom-right corner of the matrix that maximizes the sum of the elements along the path. The path can only move down or right.
Code Solution
// C Program
// Maximum sum path in a Matrix
#include <stdio.h>
#include <limits.h>
#define R 3
#define C 4
// Find the path sum of (0,0) to Matrix (R-1,C-1)
void path_sum(int matrix[R][C],int *output,int i ,int j,int count,int k,int sum)
{
if(count==k && *output < sum)
{
// When get a new result
*output = sum;
}
else if(i < R && j < C)
{
//Recursive execute method with new parameters
path_sum(matrix,output,i+1,j,count+1,k,sum+matrix[i][j]);
path_sum(matrix,output,i,j+1,count+1,k,sum+matrix[i][j]);
}
}
// Handles the request to find max path sum in a matrix
void max_path_sum(int matrix[R][C])
{
// Set initially min value
int output = INT_MIN;
// Calculate max path sum
path_sum(matrix,&output,0,0,0,R+C-1,0);
// Display find result
printf(" %d \n",output);
}
int main()
{
int matrix[R][C] =
{
{4, 6, -2 , 2 },
{3, -1, 5 , 3 },
{1, 7, 4, 6 }
};
// 4 -> 6 -> -1 -> 7 -> 4 -> 6
max_path_sum(matrix);
return 0;
}
Output
26
/*
Java program
Maximum sum path in a Matrix
*/
// Define TreeNode
public class MyMatrix
{
public int output;
// Find the path sum of (0,0) to Matrix (R-1,C-1)
public void path_sum(int[][] matrix,
int i, int j,
int count, int k,
int sum,
int rows, int cols)
{
if (count == k && this.output < sum)
{
// When get a new result
this.output = sum;
}
else if (i < rows && j < cols)
{
//Recursive execute method with new parameters
path_sum(matrix, i + 1, j, count + 1, k, sum + matrix[i][j],rows,cols);
path_sum(matrix, i, j + 1, count + 1, k, sum + matrix[i][j],rows,cols);
}
}
// Handles the request to find max path sum in a matrix
public void max_path_sum(int[][] matrix)
{
int r = matrix.length;
int c = matrix[0].length;
// Set initially min value
this.output = Integer.MIN_VALUE;
// Calculate max path sum
path_sum(matrix, 0, 0, 0, r + c - 1, 0, r, c);
// Display find result
System.out.print(" " + this.output + " \n");
}
public static void main(String[] args)
{
MyMatrix obj = new MyMatrix();
int[][] matrix =
{
{
4 , 6 , -2 , 2
},
{
3 , -1 , 5 , 3
},
{
1 , 7 , 4 , 6
}
};
// 4->6->-1->7->4->6
obj.max_path_sum(matrix);
}
}
Output
26
// Include header file
#include <iostream>
#include<limits.h>
#define R 3
#define C 4
using namespace std;
/*
C++ program
Maximum sum path in a Matrix
*/
// Define TreeNode
class MyMatrix
{
public: int output;
// Find the path sum of (0,0) to Matrix (R-1,C-1)
void path_sum(int matrix[R][C], int i, int j, int count, int k, int sum)
{
if (count == k && this->output < sum)
{
// When get a new result
this->output = sum;
}
else if (i < R && j < C)
{
// Recursive execute method with new parameters
this->path_sum(matrix, i + 1, j, count + 1, k, sum + matrix[i][j]);
this->path_sum(matrix, i, j + 1, count + 1, k, sum + matrix[i][j]);
}
}
// Handles the request to find max path sum in a matrix
void max_path_sum(int matrix[R][C])
{
// Set initially min value
this->output = INT_MIN;
// Calculate max path sum
this->path_sum(matrix, 0, 0, 0, R + C - 1, 0);
// Display find result
cout << " " << this->output << " \n";
}
};
int main()
{
MyMatrix obj = MyMatrix();
int matrix[R][C] = {
{
4 , 6 , -2 , 2
} , {
3 , -1 , 5 , 3
} , {
1 , 7 , 4 , 6
}
};
// 4->6->-1->7->4->6
obj.max_path_sum(matrix);
return 0;
}
Output
26
// Include namespace system
using System;
/*
C# program
Maximum sum path in a Matrix
*/
// Define TreeNode
public class MyMatrix
{
public int output;
// Find the path sum of (0,0) to Matrix (R-1,C-1)
public void path_sum(int[,] matrix, int i, int j, int count, int k, int sum, int rows, int cols)
{
if (count == k && this.output < sum)
{
// When get a new result
this.output = sum;
}
else if (i < rows && j < cols)
{
// Recursive execute method with new parameters
path_sum(matrix, i + 1, j, count + 1, k, sum + matrix[i,j], rows, cols);
path_sum(matrix, i, j + 1, count + 1, k, sum + matrix[i,j], rows, cols);
}
}
// Handles the request to find max path sum in a matrix
public void max_path_sum(int[,] matrix)
{
int r = matrix.GetLength(0);
int c = matrix.GetLength(1);
// Set initially min value
this.output = int.MinValue;
// Calculate max path sum
path_sum(matrix, 0, 0, 0, r + c - 1, 0, r, c);
// Display find result
Console.Write(" " + this.output + " \n");
}
public static void Main(String[] args)
{
MyMatrix obj = new MyMatrix();
int[,] matrix = {
{
4 , 6 , -2 , 2
} , {
3 , -1 , 5 , 3
} , {
1 , 7 , 4 , 6
}
};
// 4->6->-1->7->4->6
obj.max_path_sum(matrix);
}
}
Output
26
<?php
/*
Php program
Maximum sum path in a Matrix
*/
// Define TreeNode
class MyMatrix
{
public $output;
// Find the path sum of (0,0) to Matrix (R-1,C-1)
public function path_sum( & $matrix, $i, $j, $count, $k, $sum, $rows, $cols)
{
if ($count == $k && $this->output < $sum)
{
// When get a new result
$this->output = $sum;
}
else if ($i < $rows && $j < $cols)
{
// Recursive execute method with new parameters
$this->path_sum($matrix, $i + 1, $j, $count + 1, $k, $sum + $matrix[$i][$j], $rows, $cols);
$this->path_sum($matrix, $i, $j + 1, $count + 1, $k, $sum + $matrix[$i][$j], $rows, $cols);
}
}
// Handles the request to find max path sum in a matrix
public function max_path_sum( & $matrix)
{
$r = count($matrix);
$c = count($matrix[0]);
// Set initially min value
$this->output = -PHP_INT_MAX;
// Calculate max path sum
$this->path_sum($matrix, 0, 0, 0, $r + $c - 1, 0, $r, $c);
// Display find result
echo " ". $this->output ." \n";
}
}
function main()
{
$obj = new MyMatrix();
$matrix = array(
array(4, 6, -2, 2),
array(3, -1, 5, 3),
array(1, 7, 4, 6)
);
// 4->6->-1->7->4->6
$obj->max_path_sum($matrix);
}
main();
Output
26
/*
Node Js program
Maximum sum path in a Matrix
*/
// Define TreeNode
class MyMatrix
{
// Find the path sum of (0,0) to Matrix (R-1,C-1)
path_sum(matrix, i, j, count, k, sum, rows, cols)
{
if (count == k && this.output < sum)
{
// When get a new result
this.output = sum;
}
else if (i < rows && j < cols)
{
// Recursive execute method with new parameters
this.path_sum(matrix, i + 1, j, count + 1, k, sum + matrix[i][j], rows, cols);
this.path_sum(matrix, i, j + 1, count + 1, k, sum + matrix[i][j], rows, cols);
}
}
// Handles the request to find max path sum in a matrix
max_path_sum(matrix)
{
var r = matrix.length;
var c = matrix[0].length;
// Set initially min value
this.output = -Number.MAX_VALUE;
// Calculate max path sum
this.path_sum(matrix, 0, 0, 0, r + c - 1, 0, r, c);
// Display find result
process.stdout.write(" " + this.output + " \n");
}
}
function main()
{
var obj = new MyMatrix();
var matrix = [
[4, 6, -2, 2] , [3, -1, 5, 3] , [1, 7, 4, 6]
];
// 4->6->-1->7->4->6
obj.max_path_sum(matrix);
}
main();
Output
26
import sys
# Python 3 program
# Maximum sum path in a Matrix
# Define TreeNode
class MyMatrix :
# Find the path sum of (0,0) to Matrix (R-1,C-1)
def path_sum(self, matrix, i, j, count, k, sum, rows, cols) :
if (count == k and self.output < sum) :
# When get a new result
self.output = sum
elif(i < rows and j < cols) :
# Recursive execute method with new parameters
self.path_sum(matrix, i + 1, j, count + 1, k, sum + matrix[i][j], rows, cols)
self.path_sum(matrix, i, j + 1, count + 1, k, sum + matrix[i][j], rows, cols)
# Handles the request to find max path sum in a matrix
def max_path_sum(self, matrix) :
r = len(matrix)
c = len(matrix[0])
# Set initially min value
self.output = -sys.maxsize
# Calculate max path sum
self.path_sum(matrix, 0, 0, 0, r + c - 1, 0, r, c)
# Display find result
print(" ", self.output ," \n", end = "")
def main() :
obj = MyMatrix()
matrix = [
[4, 6, -2, 2] ,
[3, -1, 5, 3] ,
[1, 7, 4, 6]
]
# 4->6->-1->7->4->6
obj.max_path_sum(matrix)
if __name__ == "__main__": main()
Output
26
# Ruby program
# Maximum sum path in a Matrix
# Define TreeNode
class MyMatrix
# Define the accessor and reader of class MyMatrix
attr_reader :output
attr_accessor :output
# Find the path sum of (0,0) to Matrix (R-1,C-1)
def path_sum(matrix, i, j, count, k, sum, rows, cols)
if (count == k && self.output < sum)
# When get a new result
self.output = sum
elsif(i < rows && j < cols)
# Recursive execute method with new parameters
self.path_sum(matrix, i + 1, j, count + 1, k, sum + matrix[i][j], rows, cols)
self.path_sum(matrix, i, j + 1, count + 1, k, sum + matrix[i][j], rows, cols)
end
end
# Handles the request to find max path sum in a matrix
def max_path_sum(matrix)
r = matrix.length
c = matrix[0].length
# Set initially min value
self.output = -(2 ** (0. size * 8 - 2))
# Calculate max path sum
self.path_sum(matrix, 0, 0, 0, r + c - 1, 0, r, c)
# Display find result
print(" ", self.output ," \n")
end
end
def main()
obj = MyMatrix.new()
matrix = [
[4, 6, -2, 2] ,
[3, -1, 5, 3] ,
[1, 7, 4, 6]
]
# 4->6->-1->7->4->6
obj.max_path_sum(matrix)
end
main()
Output
26
/*
Scala program
Maximum sum path in a Matrix
*/
// Define TreeNode
class MyMatrix(var output: Int)
{
// Find the path sum of (0,0) to Matrix (R-1,C-1)
def path_sum(matrix: Array[Array[Int]],
i: Int, j: Int, count: Int, k: Int,
sum: Int, rows: Int, cols: Int): Unit = {
if (count == k && this.output < sum)
{
// When get a new result
this.output = sum;
}
else if (i < rows && j < cols)
{
// Recursive execute method with new parameters
this.path_sum(matrix, i + 1, j, count + 1, k, sum + matrix(i)(j), rows, cols);
this.path_sum(matrix, i, j + 1, count + 1, k, sum + matrix(i)(j), rows, cols);
}
}
// Handles the request to find max path sum in a matrix
def max_path_sum(matrix: Array[Array[Int]]): Unit = {
var r: Int = matrix.length;
var c: Int = matrix(0).length;
// Set initially min value
this.output = Int.MinValue;
// Calculate max path sum
this.path_sum(matrix, 0, 0, 0, r + c - 1, 0, r, c);
// Display find result
print(" " + this.output + " \n");
}
}
object Main
{
def main(args: Array[String]): Unit = {
var obj: MyMatrix = new MyMatrix(0);
var matrix: Array[Array[Int]] =
Array(Array(4, 6, -2, 2),
Array(3, -1, 5, 3),
Array(1, 7, 4, 6));
// 4->6->-1->7->4->6
obj.max_path_sum(matrix);
}
}
Output
26
/*
Swift 4 program
Maximum sum path in a Matrix
*/
// Define TreeNode
class MyMatrix
{
var output: Int;
init()
{
self.output = 0;
}
// Find the path sum of (0,0) to Matrix (R-1,C-1)
func path_sum(_ matrix: [[Int]], _ i: Int, _ j: Int, _ count: Int, _ k: Int, _ sum: Int, _ rows: Int, _ cols: Int)
{
if (count == k && self.output < sum)
{
// When get a new result
self.output = sum;
}
else if (i < rows && j < cols)
{
// Recursive execute method with new parameters
self.path_sum(matrix, i + 1, j, count + 1, k, sum + matrix[i][j], rows, cols);
self.path_sum(matrix, i, j + 1, count + 1, k, sum + matrix[i][j], rows, cols);
}
}
// Handles the request to find max path sum in a matrix
func max_path_sum(_ matrix: [
[Int]
])
{
let r: Int = matrix.count;
let c: Int = matrix[0].count;
// Set initially min value
self.output = Int.min;
// Calculate max path sum
self.path_sum(matrix, 0, 0, 0, r + c - 1, 0, r, c);
// Display find result
print(" ", self.output ," \n", terminator: "");
}
}
func main()
{
let obj: MyMatrix = MyMatrix();
let matrix: [
[Int]
] = [
[4, 6, -2, 2] , [3, -1, 5, 3] , [1, 7, 4, 6]
];
// 4->6->-1->7->4->6
obj.max_path_sum(matrix);
}
main();
Output
26
/*
Kotlin program
Maximum sum path in a Matrix
*/
// Define TreeNode
class MyMatrix
{
var output: Int;
constructor()
{
this.output = 0;
}
// Find the path sum of (0,0) to Matrix (R-1,C-1)
fun path_sum(matrix: Array < Array < Int >> , i: Int, j: Int, count: Int, k: Int, sum: Int, rows: Int, cols: Int): Unit
{
if (count == k && this.output < sum)
{
// When get a new result
this.output = sum;
}
else if (i < rows && j < cols)
{
// Recursive execute method with new parameters
this.path_sum(matrix, i + 1, j, count + 1, k, sum + matrix[i][j], rows, cols);
this.path_sum(matrix, i, j + 1, count + 1, k, sum + matrix[i][j], rows, cols);
}
}
// Handles the request to find max path sum in a matrix
fun max_path_sum(matrix: Array<Array<Int>> ): Unit
{
var r: Int = matrix.count();
var c: Int = matrix[0].count();
// Set initially min value
this.output = Int.MIN_VALUE;
// Calculate max path sum
this.path_sum(matrix, 0, 0, 0, r + c - 1, 0, r, c);
// Display find result
print(" " + this.output + " \n");
}
}
fun main(args: Array < String > ): Unit
{
var obj: MyMatrix = MyMatrix();
var matrix: Array <Array<Int>> =
arrayOf(arrayOf(4, 6, -2, 2),
arrayOf(3, -1, 5, 3),
arrayOf(1, 7, 4, 6));
// 4->6->-1->7->4->6
obj.max_path_sum(matrix);
}
Output
26
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment