Maximum path sum in a triangle
Here given code implementation process.
/*
Java program for
Maximum path sum in a triangle
*/
public class Path
{
public int maxValue(int a, int b)
{
if(a > b)
{
return a;
}
return b;
}
public void maxPath(int [][]triangle)
{
int n = triangle.length;
int m = triangle[0].length;
int k = m-2;
// Auxiliary space
int [][]dp = new int[n][m];
// Copy triangle element
for (int i = 0; i < n ; ++i )
{
for (int j = 0; j < m ; ++j )
{
dp[i][j] = triangle[i][j];
}
}
for ( int r = n-2; r >= 0 ; r-- )
{
for (int c = k; c >= 0 ; c-- )
{
if(c > 0)
{
// Set max value of current element and
// combination of bottom element.
// Bottom element is combination of three elements
dp[r][c] = maxValue(
maxValue(dp[r+1][c-1] + dp[r][c],
dp[r+1][c] + dp[r][c]),
dp[r+1][c+1] + dp[r][c]);
}
else
{
// Two bottom element are used
dp[r][c] = maxValue(dp[r+1][c] + dp[r][c],
dp[r+1][c+1] + dp[r][c]);
}
}
k--;
}
System.out.println(dp[0][0]);
}
public static void main(String[] args)
{
Path task = new Path();
int [][]triangle =
{
{1, 0, 0, 0, 0},
{-2, 1, 0, 0, 0},
{7, 3, 4, 0, 0},
{5, 4, 2, 3, 0},
{1, 1, 3, 3, 0}
};
/*
{1, -, -, -, -},
⤡
{-, 1, -, -, -},
⤢
{7, -, -, -, -},
⤡
{-, 4, -, -, -},
⤡
{-, -, 3, -, -}
-----------------------
1 + 1 + 7 + 4 + 3 = 16
*/
task.maxPath(triangle);
}
}
Output
16
// Include header file
#include <iostream>
#define N 5
using namespace std;
/*
C++ program for
Maximum path sum in a triangle
*/
class Path
{
public: int maxValue(int a, int b)
{
if (a > b)
{
return a;
}
return b;
}
void maxPath(int triangle[N][N])
{
int k = N - 2;
// Auxiliary space
int dp[N][N];
// Copy triangle element
for (int i = 0; i < N; ++i)
{
for (int j = 0; j < N; ++j)
{
dp[i][j] = triangle[i][j];
}
}
for (int r = N - 2; r >= 0; r--)
{
for (int c = k; c >= 0; c--)
{
if (c > 0)
{
// Set max value of current element and
// combination of bottom element.
// Bottom element is combination of three elements
dp[r][c] = this->maxValue(
this->maxValue(dp[r + 1][c - 1] + dp[r][c],
dp[r + 1][c] + dp[r][c]),
dp[r + 1][c + 1] + dp[r][c]);
}
else
{
// Two bottom element are used
dp[r][c] = this->maxValue(dp[r + 1][c] + dp[r][c],
dp[r + 1][c + 1] + dp[r][c]);
}
}
k--;
}
cout << dp[0][0] << endl;
}
};
int main()
{
Path *task = new Path();
int triangle[N][N] =
{
{1, 0, 0, 0, 0},
{-2, 1, 0, 0, 0},
{7, 3, 4, 0, 0},
{5, 4, 2, 3, 0},
{1, 1, 3, 3, 0}
};
/*
{1, -, -, -, -},
⤡
{-, 1, -, -, -},
⤢
{7, -, -, -, -},
⤡
{-, 4, -, -, -},
⤡
{-, -, 3, -, -}
-----------------------
1 + 1 + 7 + 4 + 3 = 16
*/
task->maxPath(triangle);
return 0;
}
Output
16
// Include namespace system
using System;
/*
Csharp program for
Maximum path sum in a triangle
*/
public class Path
{
public int maxValue(int a, int b)
{
if (a > b)
{
return a;
}
return b;
}
public void maxPath(int[,] triangle)
{
int n = triangle.GetLength(0);
int m = triangle.GetLength(1);
int k = m - 2;
// Auxiliary space
int[,] dp = new int[n,m];
// Copy triangle element
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < m; ++j)
{
dp[i,j] = triangle[i,j];
}
}
for (int r = n - 2; r >= 0; r--)
{
for (int c = k; c >= 0; c--)
{
if (c > 0)
{
// Set max value of current element and
// combination of bottom element.
// Bottom element is combination of three elements
dp[r,c] = this.maxValue(
this.maxValue(dp[r + 1,c - 1] + dp[r,c],
dp[r + 1,c] + dp[r,c]),
dp[r + 1,c + 1] + dp[r,c]);
}
else
{
// Two bottom element are used
dp[r,c] = this.maxValue(
dp[r + 1,c] + dp[r,c],
dp[r + 1,c + 1] + dp[r,c]);
}
}
k--;
}
Console.WriteLine(dp[0,0]);
}
public static void Main(String[] args)
{
Path task = new Path();
int[,] triangle = {
{
1 , 0 , 0 , 0 , 0
},
{
-2 , 1 , 0 , 0 , 0
},
{
7 , 3 , 4 , 0 , 0
},
{
5 , 4 , 2 , 3 , 0
},
{
1 , 1 , 3 , 3 , 0
}
};
/*
[1, -, -, -, -]
⤡
[-, 1, -, -, -]
⤢
[7, -, -, -, -]
⤡
[-, 4, -, -, -]
⤡
[-, -, 3, -, -]
-----------------------
1 + 1 + 7 + 4 + 3 = 16
*/
task.maxPath(triangle);
}
}
Output
16
package main
import "fmt"
/*
Go program for
Maximum path sum in a triangle
*/
func maxValue(a, b int) int {
if a > b {
return a
}
return b
}
func maxPath(triangle[][] int) {
var n int = len(triangle)
var m int = len(triangle[0])
var k int = m - 2
// Auxiliary space
var dp = make([][] int, n)
for i:= 0;i < n;i++{
dp[i] = make([]int,m)
}
// Copy triangle element
for i := 0 ; i < n ; i++ {
for j := 0 ; j < m ; j++ {
dp[i][j] = triangle[i][j]
}
}
for r := n - 2 ; r >= 0 ; r-- {
for c := k ; c >= 0 ; c-- {
if c > 0 {
// Set max value of current element and
// combination of bottom element.
// Bottom element is combination of three elements
dp[r][c] = maxValue(
maxValue(dp[r + 1][c - 1] + dp[r][c],
dp[r + 1][c] + dp[r][c]),
dp[r + 1][c + 1] + dp[r][c])
} else {
// Two bottom element are used
dp[r][c] = maxValue(
dp[r + 1][c] + dp[r][c],
dp[r + 1][c + 1] + dp[r][c])
}
}
k--
}
fmt.Println(dp[0][0])
}
func main() {
var triangle = [][] int {
{1, 0, 0, 0, 0},
{-2, 1, 0, 0, 0},
{7, 3, 4, 0, 0},
{5, 4, 2, 3, 0},
{1, 1, 3, 3, 0},
}
/*
[1, -, -, -, -]
⤡
[-, 1, -, -, -]
⤢
[7, -, -, -, -]
⤡
[-, 4, -, -, -]
⤡
[-, -, 3, -, -]
-----------------------
1 + 1 + 7 + 4 + 3 = 16
*/
maxPath(triangle)
}
Output
16
<?php
/*
Php program for
Maximum path sum in a triangle
*/
class Path
{
public function maxValue($a, $b)
{
if ($a > $b)
{
return $a;
}
return $b;
}
public function maxPath($triangle)
{
$n = count($triangle);
$m = count($triangle[0]);
$k = $m - 2;
// Auxiliary space
$dp = array_fill(0, $n, array_fill(0, $m, 0));
// Copy triangle element
for ($i = 0; $i < $n; ++$i)
{
for ($j = 0; $j < $m; ++$j)
{
$dp[$i][$j] = $triangle[$i][$j];
}
}
for ($r = $n - 2; $r >= 0; $r--)
{
for ($c = $k; $c >= 0; $c--)
{
if ($c > 0)
{
// Set max value of current element and
// combination of bottom element.
// Bottom element is combination of three elements
$dp[$r][$c] = $this->maxValue(
$this->maxValue($dp[$r + 1][$c - 1] + $dp[$r][$c],
$dp[$r + 1][$c] + $dp[$r][$c]),
$dp[$r + 1][$c + 1] + $dp[$r][$c]);
}
else
{
// Two bottom element are used
$dp[$r][$c] = $this->maxValue(
$dp[$r + 1][$c] + $dp[$r][$c],
$dp[$r + 1][$c + 1] + $dp[$r][$c]);
}
}
$k--;
}
echo($dp[0][0].
"\n");
}
}
function main()
{
$task = new Path();
$triangle = array(
array(1, 0, 0, 0, 0),
array(-2, 1, 0, 0, 0),
array(7, 3, 4, 0, 0),
array(5, 4, 2, 3, 0),
array(1, 1, 3, 3, 0)
);
/*
[1, -, -, -, -]
⤡
[-, 1, -, -, -]
⤢
[7, -, -, -, -]
⤡
[-, 4, -, -, -]
⤡
[-, -, 3, -, -]
-----------------------
1 + 1 + 7 + 4 + 3 = 16
*/
$task->maxPath($triangle);
}
main();
Output
16
/*
Node JS program for
Maximum path sum in a triangle
*/
class Path
{
maxValue(a, b)
{
if (a > b)
{
return a;
}
return b;
}
maxPath(triangle)
{
var n = triangle.length;
var m = triangle[0].length;
var k = m - 2;
// Auxiliary space
var dp = Array(n).fill(0).map(() => new Array(m).fill(0));
// Copy triangle element
for (var i = 0; i < n; ++i)
{
for (var j = 0; j < m; ++j)
{
dp[i][j] = triangle[i][j];
}
}
for (var r = n - 2; r >= 0; r--)
{
for (var c = k; c >= 0; c--)
{
if (c > 0)
{
// Set max value of current element and
// combination of bottom element.
// Bottom element is combination of three elements
dp[r][c] = this.maxValue(
this.maxValue(dp[r + 1][c - 1] + dp[r][c],
dp[r + 1][c] + dp[r][c]),
dp[r + 1][c + 1] + dp[r][c]);
}
else
{
// Two bottom element are used
dp[r][c] = this.maxValue(
dp[r + 1][c] + dp[r][c],
dp[r + 1][c + 1] + dp[r][c]
);
}
}
k--;
}
console.log(dp[0][0]);
}
}
function main()
{
var task = new Path();
var triangle = [
[1, 0, 0, 0, 0],
[-2, 1, 0, 0, 0],
[7, 3, 4, 0, 0],
[5, 4, 2, 3, 0],
[1, 1, 3, 3, 0]
];
/*
[1, -, -, -, -]
⤡
[-, 1, -, -, -]
⤢
[7, -, -, -, -]
⤡
[-, 4, -, -, -]
⤡
[-, -, 3, -, -]
-----------------------
1 + 1 + 7 + 4 + 3 = 16
*/
task.maxPath(triangle);
}
main();
Output
16
# Python 3 program for
# Maximum path sum in a triangle
class Path :
def maxValue(self, a, b) :
if (a > b) :
return a
return b
def maxPath(self, triangle) :
n = len(triangle)
m = len(triangle[0])
k = m - 2
# Auxiliary space
dp = [[0] * (m) for _ in range(n) ]
i = 0
# Copy triangle element
while (i < n) :
j = 0
while (j < m) :
dp[i][j] = triangle[i][j]
j += 1
i += 1
r = n - 2
while (r >= 0) :
c = k
while (c >= 0) :
if (c > 0) :
# Set max value of current element and
# combination of bottom element.
# Bottom element is combination of three elements
dp[r][c] = self.maxValue(
self.maxValue(dp[r + 1][c - 1] + dp[r][c],
dp[r + 1][c] + dp[r][c]),
dp[r + 1][c + 1] + dp[r][c])
else :
# Two bottom element are used
dp[r][c] = self.maxValue(dp[r + 1][c] + dp[r][c],
dp[r + 1][c + 1] + dp[r][c])
c -= 1
k -= 1
r -= 1
print(dp[0][0])
def main() :
task = Path()
triangle = [
[1, 0, 0, 0, 0],
[-2, 1, 0, 0, 0],
[7, 3, 4, 0, 0],
[5, 4, 2, 3, 0],
[1, 1, 3, 3, 0]
]
# [1, -, -, -, -]
# ⤡
# [-, 1, -, -, -]
# ⤢
# [7, -, -, -, -]
# ⤡
# [-, 4, -, -, -]
# ⤡
# [-, -, 3, -, -]
# -----------------------
# 1 + 1 + 7 + 4 + 3 = 16
task.maxPath(triangle)
if __name__ == "__main__": main()
Output
16
# Ruby program for
# Maximum path sum in a triangle
class Path
def maxValue(a, b)
if (a > b)
return a
end
return b
end
def maxPath(triangle)
n = triangle.length
m = triangle[0].length
k = m - 2
# Auxiliary space
dp = Array.new(n) {Array.new(m) {0}}
i = 0
# Copy triangle element
while (i < n)
j = 0
while (j < m)
dp[i][j] = triangle[i][j]
j += 1
end
i += 1
end
r = n - 2
while (r >= 0)
c = k
while (c >= 0)
if (c > 0)
# Set max value of current element and
# combination of bottom element.
# Bottom element is combination of three elements
dp[r][c] = self.maxValue(
self.maxValue(dp[r + 1][c - 1] + dp[r][c],
dp[r + 1][c] + dp[r][c]),
dp[r + 1][c + 1] + dp[r][c])
else
# Two bottom element are used
dp[r][c] = self.maxValue(
dp[r + 1][c] + dp[r][c],
dp[r + 1][c + 1] + dp[r][c])
end
c -= 1
end
k -= 1
r -= 1
end
print(dp[0][0], "\n")
end
end
def main()
task = Path.new()
triangle = [
[1, 0, 0, 0, 0],
[-2, 1, 0, 0, 0],
[7, 3, 4, 0, 0],
[5, 4, 2, 3, 0],
[1, 1, 3, 3, 0]
]
# [1, -, -, -, -]
# ⤡
# [-, 1, -, -, -]
# ⤢
# [7, -, -, -, -]
# ⤡
# [-, 4, -, -, -]
# ⤡
# [-, -, 3, -, -]
# -----------------------
# 1 + 1 + 7 + 4 + 3 = 16
task.maxPath(triangle)
end
main()
Output
16
/*
Scala program for
Maximum path sum in a triangle
*/
class Path()
{
def maxValue(a: Int, b: Int): Int = {
if (a > b)
{
return a;
}
return b;
}
def maxPath(triangle: Array[Array[Int]]): Unit = {
var n: Int = triangle.length;
var m: Int = triangle(0).length;
var k: Int = m - 2;
// Auxiliary space
var dp: Array[Array[Int]] = Array.fill[Int](n, m)(0);
var i: Int = 0;
// Copy triangle element
while (i < n)
{
var j: Int = 0;
while (j < m)
{
dp(i)(j) = triangle(i)(j);
j += 1;
}
i += 1;
}
var r: Int = n - 2;
while (r >= 0)
{
var c: Int = k;
while (c >= 0)
{
if (c > 0)
{
// Set max value of current element and
// combination of bottom element.
// Bottom element is combination of three elements
dp(r)(c) = maxValue(
maxValue(dp(r + 1)(c - 1) + dp(r)(c),
dp(r + 1)(c) + dp(r)(c)),
dp(r + 1)(c + 1) + dp(r)(c));
}
else
{
// Two bottom element are used
dp(r)(c) = maxValue(
dp(r + 1)(c) + dp(r)(c),
dp(r + 1)(c + 1) + dp(r)(c));
}
c -= 1;
}
k -= 1;
r -= 1;
}
println(dp(0)(0));
}
}
object Main
{
def main(args: Array[String]): Unit = {
var task: Path = new Path();
var triangle: Array[Array[Int]] = Array(
Array(1, 0, 0, 0, 0),
Array(-2, 1, 0, 0, 0),
Array(7, 3, 4, 0, 0),
Array(5, 4, 2, 3, 0),
Array(1, 1, 3, 3, 0)
);
/*
[1, -, -, -, -]
⤡
[-, 1, -, -, -]
⤢
[7, -, -, -, -]
⤡
[-, 4, -, -, -]
⤡
[-, -, 3, -, -]
-----------------------
1 + 1 + 7 + 4 + 3 = 16
*/
task.maxPath(triangle);
}
}
Output
16
import Foundation;
/*
Swift 4 program for
Maximum path sum in a triangle
*/
class Path
{
func maxValue(_ a: Int, _ b: Int) -> Int
{
if (a > b)
{
return a;
}
return b;
}
func maxPath(_ triangle: [
[Int]
])
{
let n: Int = triangle.count;
let m: Int = triangle[0].count;
var k: Int = m - 2;
// Auxiliary space
var dp: [
[Int]
] = Array(repeating: Array(repeating: 0, count: m), count: n);
var i: Int = 0;
// Copy triangle element
while (i < n)
{
var j: Int = 0;
while (j < m)
{
dp[i][j] = triangle[i][j];
j += 1;
}
i += 1;
}
var r: Int = n - 2;
while (r >= 0)
{
var c: Int = k;
while (c >= 0)
{
if (c > 0)
{
// Set max value of current element and
// combination of bottom element.
// Bottom element is combination of three elements
dp[r][c] =
self.maxValue(
self.maxValue(dp[r + 1][c - 1] + dp[r][c],
dp[r + 1][c] + dp[r][c]),
dp[r + 1][c + 1] + dp[r][c]);
}
else
{
// Two bottom element are used
dp[r][c] = self.maxValue(dp[r + 1][c] + dp[r][c],
dp[r + 1][c + 1] + dp[r][c]);
}
c -= 1;
}
k -= 1;
r -= 1;
}
print(dp[0][0]);
}
}
func main()
{
let task: Path = Path();
let triangle: [
[Int]
] = [
[1, 0, 0, 0, 0],
[-2, 1, 0, 0, 0],
[7, 3, 4, 0, 0],
[5, 4, 2, 3, 0],
[1, 1, 3, 3, 0]
];
/*
[1, -, -, -, -]
⤡
[-, 1, -, -, -]
⤢
[7, -, -, -, -]
⤡
[-, 4, -, -, -]
⤡
[-, -, 3, -, -]
-----------------------
1 + 1 + 7 + 4 + 3 = 16
*/
task.maxPath(triangle);
}
main();
Output
16
/*
Kotlin program for
Maximum path sum in a triangle
*/
class Path
{
fun maxValue(a: Int, b: Int): Int
{
if (a > b)
{
return a;
}
return b;
}
fun maxPath(triangle: Array < Array < Int >> ): Unit
{
val n: Int = triangle.count();
val m: Int = triangle[0].count();
var k: Int = m - 2;
// Auxiliary space
val dp: Array < Array < Int >> = Array(n)
{
Array(m)
{
0
}
};
var i: Int = 0;
// Copy triangle element
while (i < n)
{
var j: Int = 0;
while (j < m)
{
dp[i][j] = triangle[i][j];
j += 1;
}
i += 1;
}
var r: Int = n - 2;
while (r >= 0)
{
var c: Int = k;
while (c >= 0)
{
if (c > 0)
{
// Set max value of current element and
// combination of bottom element.
// Bottom element is combination of three elements
dp[r][c] = this.maxValue(
this.maxValue(dp[r + 1][c - 1] + dp[r][c],
dp[r + 1][c] + dp[r][c]),
dp[r + 1][c + 1] + dp[r][c]);
}
else
{
// Two bottom element are used
dp[r][c] = this.maxValue(
dp[r + 1][c] + dp[r][c],
dp[r + 1][c + 1] + dp[r][c]);
}
c -= 1;
}
k -= 1;
r -= 1;
}
println(dp[0][0]);
}
}
fun main(args: Array < String > ): Unit
{
val task: Path = Path();
val triangle: Array < Array < Int >> = arrayOf(
arrayOf(1, 0, 0, 0, 0),
arrayOf(-2, 1, 0, 0, 0),
arrayOf(7, 3, 4, 0, 0),
arrayOf(5, 4, 2, 3, 0),
arrayOf(1, 1, 3, 3, 0)
);
/*
[1, -, -, -, -]
⤡
[-, 1, -, -, -]
⤢
[7, -, -, -, -]
⤡
[-, 4, -, -, -]
⤡
[-, -, 3, -, -]
-----------------------
1 + 1 + 7 + 4 + 3 = 16
*/
task.maxPath(triangle);
}
Output
16
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment