Maximum number of edges in a bipartite graph
Here given code implementation process.
// C program for
// Maximum number of edges in a bipartite graph
#include <stdio.h>
#include <math.h>
void maxEdges(int vertices)
{
int edges = floor((vertices *vertices) / 4);
// Display calculated result
printf("\n Given vertices : %d", vertices);
printf("\n Max edges : %d\n", edges);
}
int main(int argc, char const *argv[])
{
// Test Case
maxEdges(8);
maxEdges(11);
return 0;
}
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
/*
Java program for
Maximum number of edges in a bipartite graph
*/
public class BipartiteGraph
{
public void maxEdges(int vertices)
{
int edges = (int)Math.floor((vertices * vertices) / 4);
// Display calculated result
System.out.print("\n Given vertices : " + vertices );
System.out.print("\n Max edges : " + edges + "\n");
}
public static void main(String[] args) {
BipartiteGraph task = new BipartiteGraph();
// Test Case
task.maxEdges(8);
task.maxEdges(11);
}
}
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
// Include header file
#include <iostream>
#include <math.h>
using namespace std;
/*
C++ program for
Maximum number of edges in a bipartite graph
*/
class BipartiteGraph
{
public: void maxEdges(int vertices)
{
int edges = (int) floor((vertices *vertices) / 4);
// Display calculated result
cout << "\n Given vertices : " << vertices;
cout << "\n Max edges : " << edges << "\n";
}
};
int main()
{
BipartiteGraph *task = new BipartiteGraph();
// Test Case
task->maxEdges(8);
task->maxEdges(11);
return 0;
}
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
// Include namespace system
using System;
/*
Csharp program for
Maximum number of edges in a bipartite graph
*/
public class BipartiteGraph
{
public void maxEdges(int vertices)
{
int edges = (int) Math.Floor((double)(vertices * vertices) / 4);
// Display calculated result
Console.Write("\n Given vertices : " + vertices);
Console.Write("\n Max edges : " + edges + "\n");
}
public static void Main(String[] args)
{
BipartiteGraph task = new BipartiteGraph();
// Test Case
task.maxEdges(8);
task.maxEdges(11);
}
}
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
package main
import "math"
import "fmt"
/*
Go program for
Maximum number of edges in a bipartite graph
*/
func maxEdges(vertices int) {
var edges = math.Floor((float64)(vertices * vertices) / 4)
// Display calculated result
fmt.Print("\n Given vertices : ", vertices)
fmt.Print("\n Max edges : ", edges, "\n")
}
func main() {
// Test Case
maxEdges(8)
maxEdges(11)
}
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
<?php
/*
Php program for
Maximum number of edges in a bipartite graph
*/
class BipartiteGraph
{
public function maxEdges($vertices)
{
$edges = (int) floor((($vertices * $vertices) / 4));
// Display calculated result
echo("\n Given vertices : ".$vertices);
echo("\n Max edges : ".$edges."\n");
}
}
function main()
{
$task = new BipartiteGraph();
// Test Case
$task->maxEdges(8);
$task->maxEdges(11);
}
main();
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
/*
Node JS program for
Maximum number of edges in a bipartite graph
*/
class BipartiteGraph
{
maxEdges(vertices)
{
var edges = Math.floor((vertices * vertices) / 4);
// Display calculated result
process.stdout.write("\n Given vertices : " + vertices);
process.stdout.write("\n Max edges : " + edges + "\n");
}
}
function main()
{
var task = new BipartiteGraph();
// Test Case
task.maxEdges(8);
task.maxEdges(11);
}
main();
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
import math
# Python 3 program for
# Maximum number of edges in a bipartite graph
class BipartiteGraph :
def maxEdges(self, vertices) :
edges = math.floor((vertices * vertices) / 4)
# Display calculated result
print("\n Given vertices : ", vertices, end = "")
print("\n Max edges : ", edges )
def main() :
task = BipartiteGraph()
# Test Case
task.maxEdges(8)
task.maxEdges(11)
if __name__ == "__main__": main()
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
# Ruby program for
# Maximum number of edges in a bipartite graph
class BipartiteGraph
def maxEdges(vertices)
edges = ((vertices * vertices) / 4). floor()
# Display calculated result
print("\n Given vertices : ", vertices)
print("\n Max edges : ", edges ,"\n")
end
end
def main()
task = BipartiteGraph.new()
# Test Case
task.maxEdges(8)
task.maxEdges(11)
end
main()
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
/*
Scala program for
Maximum number of edges in a bipartite graph
*/
class BipartiteGraph()
{
def maxEdges(vertices: Int): Unit = {
var edges: Int = Math.floor((vertices * vertices) / 4).toInt;
// Display calculated result
print("\n Given vertices : " + vertices);
print("\n Max edges : " + edges + "\n");
}
}
object Main
{
def main(args: Array[String]): Unit = {
var task: BipartiteGraph = new BipartiteGraph();
// Test Case
task.maxEdges(8);
task.maxEdges(11);
}
}
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
import Foundation;
/*
Swift 4 program for
Maximum number of edges in a bipartite graph
*/
class BipartiteGraph
{
func maxEdges(_ vertices: Int)
{
let edges: Int = Int(floor(Double(vertices * vertices) / 4));
// Display calculated result
print("\n Given vertices : ", vertices, terminator: "");
print("\n Max edges : ", edges );
}
}
func main()
{
let task: BipartiteGraph = BipartiteGraph();
// Test Case
task.maxEdges(8);
task.maxEdges(11);
}
main();
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
/*
Kotlin program for
Maximum number of edges in a bipartite graph
*/
class BipartiteGraph
{
fun maxEdges(vertices: Int): Unit
{
val edges: Int = Math.floor(
((vertices * vertices) / 4).toDouble()
).toInt();
// Display calculated result
print("\n Given vertices : " + vertices);
print("\n Max edges : " + edges + "\n");
}
}
fun main(args: Array < String > ): Unit
{
val task: BipartiteGraph = BipartiteGraph();
// Test Case
task.maxEdges(8);
task.maxEdges(11);
}
Output
Given vertices : 8
Max edges : 16
Given vertices : 11
Max edges : 30
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment