Insertion in binary search tree without recursion in scala
Scala program for Insertion in binary search tree without recursion. Here problem description and explanation.
// Scala program for
// iterative insert in binary search tree
class TreeNode(var data: Int,
var left: TreeNode,
var right: TreeNode)
{
def this(data: Int)
{
this(data, null, null)
}
}
class BinarySearchTree(var root: TreeNode)
{
def this()
{
this(null)
}
//insert a element
def addNode(data: Int): Unit = {
// Create a new node
var node: TreeNode = new TreeNode(data);
if (this.root == null)
{
// When adds a first node in bst
this.root = node;
}
else
{
var find: TreeNode = this.root;
// Add new node to proper position
while (find != null)
{
if (find.data >= data)
{
if (find.left == null)
{
// When left child empty
// So add new node here
find.left = node;
return;
}
else
{
// Otherwise
// Visit left sub-tree
find = find.left;
}
}
else
{
if (find.right == null)
{
// When right child empty
// So add new node here
find.right = node;
return;
}
else
{
// Visit right sub-tree
find = find.right;
}
}
}
}
}
// Display preorder
def preorder(node: TreeNode): Unit = {
if (node != null)
{
// Display node value
print(" " + node.data);
// Visit to left subtree
preorder(node.left);
// Visit to right subtree
preorder(node.right);
}
}
def inorder(node: TreeNode): Unit = {
if (node != null)
{
// Visit to left subtree
inorder(node.left);
// Display node value
print(" " + node.data);
// Visit to right subtree
inorder(node.right);
}
}
def postorder(node: TreeNode): Unit = {
if (node != null)
{
// Visit to left subtree
postorder(node.left);
// Visit to right subtree
postorder(node.right);
// Display node value
print(" " + node.data);
}
}
}
object Main
{
def main(args: Array[String]): Unit = {
var tree: BinarySearchTree = new BinarySearchTree();
/*
10
/ \
/ \
4 15
/ \ /
3 5 12
-------------
Build binary search tree
*/
tree.addNode(10);
tree.addNode(4);
tree.addNode(3);
tree.addNode(5);
tree.addNode(15);
tree.addNode(12);
// Display tree nodes
println("Preorder ");
tree.preorder(tree.root);
println("\nInorder ");
tree.inorder(tree.root);
println("\nPostorder ");
tree.postorder(tree.root);
}
}
Output
Preorder
10 4 3 5 15 12
Inorder
3 4 5 10 12 15
Postorder
3 5 4 12 15 10
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment