# Insertion in binary search tree without recursion in kotlin

Kotlin program for Insertion in binary search tree without recursion. Here problem description and other solutions.

``````// Kotlin program for
// iterative insert in binary search tree
class TreeNode
{
var data: Int;
var left: TreeNode ? ;
var right: TreeNode ? ;
constructor(data: Int)
{
this.data = data;
this.left = null;
this.right = null;
}
}
class BinarySearchTree
{
var root: TreeNode ? ;
constructor()
{
this.root = null;
}
//insert a element
{
// Create a new node
val node: TreeNode = TreeNode(data);
if (this.root == null)
{
// When adds a first node in bst
this.root = node;
}
else
{
var find: TreeNode ? = this.root;
// Add new node to proper position
while (find != null)
{
if (find.data >= data)
{
if (find.left == null)
{
// When left child empty
// So add new node here
find.left = node;
return;
}
else
{
// Otherwise
// Visit left sub-tree
find = find.left;
}
}
else
{
if (find.right == null)
{
// When right child empty
// So add new node here
find.right = node;
return;
}
else
{
// Visit right sub-tree
find = find.right;
}
}
}
}
}
// Display preorder
fun preorder(node: TreeNode ? ): Unit
{
if (node != null)
{
// Display node value
print("  " + node.data);
// Visit to left subtree
this.preorder(node.left);
// Visit to right subtree
this.preorder(node.right);
}
}
fun inorder(node: TreeNode ? ): Unit
{
if (node != null)
{
// Visit to left subtree
this.inorder(node.left);
// Display node value
print("  " + node.data);
// Visit to right subtree
this.inorder(node.right);
}
}
fun postorder(node: TreeNode ? ): Unit
{
if (node != null)
{
// Visit to left subtree
this.postorder(node.left);
// Visit to right subtree
this.postorder(node.right);
// Display node value
print("  " + node.data);
}
}
}
fun main(args: Array < String > ): Unit
{
val tree: BinarySearchTree = BinarySearchTree();
/*
10
/ \
/   \
4     15
/ \   /
3   5 12
-------------
Build binary search tree

*/
// Display tree nodes
println("Preorder ");
tree.preorder(tree.root);
println("\nInorder ");
tree.inorder(tree.root);
println("\nPostorder ");
tree.postorder(tree.root);
}``````

Output

``````Preorder
10  4  3  5  15  12
Inorder
3  4  5  10  12  15
Postorder
3  5  4  12  15  10``````

## Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.