Insertion in binary search tree using recursion in kotlin
Kotlin program for Insertion in binary search tree using recursion. Here problem description and explanation.
// Kotlin program for
// Insertion in binary search tree by using recursion
class TreeNode
{
var data: Int;
var left: TreeNode ? ;
var right: TreeNode ? ;
constructor(data: Int)
{
this.data = data;
this.left = null;
this.right = null;
}
}
class BinarySearchTree
{
var root: TreeNode ? ;
constructor()
{
this.root = null;
}
// Insert a node element
fun addNode(node: TreeNode ? , data : Int): TreeNode ?
{
if (node != null)
{
if (node.data >= data)
{
// When new element is smaller or
// equal to current node
node.left = this.addNode(node.left, data);
}
else
{
// When new element is higher to current node
node.right = this.addNode(node.right, data);
}
// important to manage root node
return node;
}
else
{
return TreeNode(data);
}
}
// Display preorder
fun preorder(node: TreeNode ? ): Unit
{
if (node != null)
{
// Display node value
print(" " + node.data);
// Visit to left subtree
this.preorder(node.left);
// Visit to right subtree
this.preorder(node.right);
}
}
fun inorder(node: TreeNode ? ): Unit
{
if (node != null)
{
// Visit to left subtree
this.inorder(node.left);
// Display node value
print(" " + node.data);
// Visit to right subtree
this.inorder(node.right);
}
}
fun postorder(node: TreeNode ? ): Unit
{
if (node != null)
{
// Visit to left subtree
this.postorder(node.left);
// Visit to right subtree
this.postorder(node.right);
// Display node value
print(" " + node.data);
}
}
}
fun main(args: Array < String > ): Unit
{
val tree: BinarySearchTree = BinarySearchTree();
/*
10
/ \
/ \
4 15
/ \ /
3 5 12
-------------
Build binary search tree
*/
tree.root = tree.addNode(tree.root, 10);
tree.addNode(tree.root, 4);
tree.addNode(tree.root, 3);
tree.addNode(tree.root, 5);
tree.addNode(tree.root, 15);
tree.addNode(tree.root, 12);
// Display tree nodes
println("Preorder ");
tree.preorder(tree.root);
println("\nInorder ");
tree.inorder(tree.root);
println("\nPostorder ");
tree.postorder(tree.root);
}
Output
Preorder
10 4 3 5 15 12
Inorder
3 4 5 10 12 15
Postorder
3 5 4 12 15 10
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment