Skip to main content

Hexagonal number

Here given code implementation process.

// C Program for
// Hexagonal number
#include <stdio.h>

void hexagonalNo(int k)
{
	// Print all initial k Hexagonal number
	for (int n = 1; n <= k; ++n)
	{
		// Formula
		// (2n² -n)
      
		// Calculate nth hexagonal number
		int result = (2 *(n *n) - n);
      
		// Display calculated result
		printf("  %d", result);
	}
}
int main()
{
	// Hexagonal number are
	// —————————————————————————————————————————————
	//  1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
	//  276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
	//  946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
	//  1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
	//  3003, 3160, 3321, 3486, 3655, 3828 ... etc
  
	// k = 10
	hexagonalNo(10);
	return 0;
}

Output

  1  6  15  28  45  66  91  120  153  190
// Java program for
// Heptagonal pyramidal number
public class HexagonalNumber
{
	public void hexagonalNo(int k)
	{
		// Print all initial k Hexagonal number
		for (int n = 1; n <= k; ++n)
		{
			// Formula
			// (2n² -n)
          
			// Calculate nth hexagonal number
			int result = (2 * (n * n) - n);
          
			// Display calculated result
			System.out.print(" " + result);
		}
	}
	public static void main(String[] args)
	{
		HexagonalNumber task = new HexagonalNumber();
		// Hexagonal number are
		// —————————————————————————————————————————————
		//  1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
		//  276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
		//  946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
		//  1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
		//  3003, 3160, 3321, 3486, 3655, 3828 ... etc
      
		// k = 10
		task.hexagonalNo(10);
	}
}

Output

 1 6 15 28 45 66 91 120 153 190
// Include header file
#include <iostream>
using namespace std;
// C++ program for
// Heptagonal pyramidal number

class HexagonalNumber
{
	public: void hexagonalNo(int k)
	{
		// Print all initial k Hexagonal number
		for (int n = 1; n <= k; ++n)
		{
			// Formula
			// (2n² -n)
          
			// Calculate nth hexagonal number
			int result = (2 *(n *n) - n);
          
			// Display calculated result
			cout << " " << result;
		}
	}
};
int main()
{
	HexagonalNumber *task = new HexagonalNumber();
	// Hexagonal number are
	// —————————————————————————————————————————————
	//  1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
	//  276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
	//  946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
	//  1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
	//  3003, 3160, 3321, 3486, 3655, 3828 ... etc
  
	// k = 10
	task->hexagonalNo(10);
	return 0;
}

Output

 1 6 15 28 45 66 91 120 153 190
package main
import "fmt"
// Go program for
// Heptagonal pyramidal number

func hexagonalNo(k int) {
	// Print all initial k Hexagonal number
	for n := 1 ; n <= k ; n++ {
		// Formula
		// (2n² -n)

		// Calculate nth hexagonal number
		var result int = (2 * (n * n) - n)
		
		// Display calculated result
		fmt.Print(" ", result)
	}
}
func main() {

	// Hexagonal number are
	// —————————————————————————————————————————————
	//  1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
	//  276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
	//  946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
	//  1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
	//  3003, 3160, 3321, 3486, 3655, 3828 ... etc

	// k = 10
	hexagonalNo(10)
}

Output

 1 6 15 28 45 66 91 120 153 190
// Include namespace system
using System;
// Csharp program for
// Heptagonal pyramidal number
public class HexagonalNumber
{
	public void hexagonalNo(int k)
	{
		// Print all initial k Hexagonal number
		for (int n = 1; n <= k; ++n)
		{
			// Formula
			// (2n² -n)
          
			// Calculate nth hexagonal number
			int result = (2 * (n * n) - n);
          
			// Display calculated result
			Console.Write(" " + result);
		}
	}
	public static void Main(String[] args)
	{
		HexagonalNumber task = new HexagonalNumber();
		// Hexagonal number are
		// —————————————————————————————————————————————
		//  1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
		//  276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
		//  946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
		//  1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
		//  3003, 3160, 3321, 3486, 3655, 3828 ... etc
      
		// k = 10
		task.hexagonalNo(10);
	}
}

Output

 1 6 15 28 45 66 91 120 153 190
<?php
// Php program for
// Heptagonal pyramidal number
class HexagonalNumber
{
	public	function hexagonalNo($k)
	{
		// Print all initial k Hexagonal number
		for ($n = 1; $n <= $k; ++$n)
		{
			// Formula
			// (2n² -n)
          
			// Calculate nth hexagonal number
			$result = (2 * ($n * $n) - $n);
          
			// Display calculated result
			echo(" ".$result);
		}
	}
}

function main()
{
	$task = new HexagonalNumber();
	// Hexagonal number are
	// —————————————————————————————————————————————
	//  1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
	//  276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
	//  946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
	//  1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
	//  3003, 3160, 3321, 3486, 3655, 3828 ... etc
  
	// k = 10
	$task->hexagonalNo(10);
}
main();

Output

 1 6 15 28 45 66 91 120 153 190
// Node JS program for
// Heptagonal pyramidal number
class HexagonalNumber
{
	hexagonalNo(k)
	{
		// Print all initial k Hexagonal number
		for (var n = 1; n <= k; ++n)
		{
			// Formula
			// (2n² -n)
          
			// Calculate nth hexagonal number
			var result = (2 * (n * n) - n);
          
			// Display calculated result
			process.stdout.write(" " + result);
		}
	}
}

function main()
{
	var task = new HexagonalNumber();
	// Hexagonal number are
	// —————————————————————————————————————————————
	//  1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
	//  276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
	//  946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
	//  1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
	//  3003, 3160, 3321, 3486, 3655, 3828 ... etc
  
	// k = 10
	task.hexagonalNo(10);
}
main();

Output

 1 6 15 28 45 66 91 120 153 190
#  Python 3 program for
#  Heptagonal pyramidal number
class HexagonalNumber :
	def hexagonalNo(self, k) :
		n = 1
		#  Print all initial k Hexagonal number
		while (n <= k) :
			#  Formula
			#  (2n² -n)
            
			#  Calculate nth hexagonal number
			result = (2 * (n * n) - n)

			#  Display calculated result
			print(" ", result, end = "")
			n += 1
		
	

def main() :
	task = HexagonalNumber()
	#  Hexagonal number are
	#  —————————————————————————————————————————————
	#   1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
	#   276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
	#   946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
	#   1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
	#   3003, 3160, 3321, 3486, 3655, 3828 ... etc
    
	#  k = 10
	task.hexagonalNo(10)

if __name__ == "__main__": main()

Output

  1  6  15  28  45  66  91  120  153  190
#  Ruby program for
#  Heptagonal pyramidal number
class HexagonalNumber 
	def hexagonalNo(k) 
		n = 1
		#  Print all initial k Hexagonal number
		while (n <= k) 
			#  Formula
			#  (2n² -n)
            
			#  Calculate nth hexagonal number
			result = (2 * (n * n) - n)

			#  Display calculated result
			print(" ", result)
			n += 1
		end

	end

end

def main() 
	task = HexagonalNumber.new()
	#  Hexagonal number are
	#  —————————————————————————————————————————————
	#   1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
	#   276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
	#   946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
	#   1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
	#   3003, 3160, 3321, 3486, 3655, 3828 ... etc
    
	#  k = 10
	task.hexagonalNo(10)
end

main()

Output

 1 6 15 28 45 66 91 120 153 190
// Scala program for
// Heptagonal pyramidal number
class HexagonalNumber()
{
	def hexagonalNo(k: Int): Unit = {
		var n: Int = 1;
		// Print all initial k Hexagonal number
		while (n <= k)
		{
			// Formula
			// (2n² -n)
          
			// Calculate nth hexagonal number
			var result: Int = (2 * (n * n) - n);
          
			// Display calculated result
			print(" " + result);
			n += 1;
		}
	}
}
object Main
{
	def main(args: Array[String]): Unit = {
		var task: HexagonalNumber = new HexagonalNumber();
		// Hexagonal number are
		// —————————————————————————————————————————————
		//  1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
		//  276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
		//  946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
		//  1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
		//  3003, 3160, 3321, 3486, 3655, 3828 ... etc
  
		// k = 10
		task.hexagonalNo(10);
	}
}

Output

 1 6 15 28 45 66 91 120 153 190
// Swift 4 program for
// Heptagonal pyramidal number
class HexagonalNumber
{
	func hexagonalNo(_ k: Int)
	{
		var n: Int = 1;
		// Print all initial k Hexagonal number
		while (n <= k)
		{
			// Formula
			// (2n² -n)
          
			// Calculate nth hexagonal number
			let result: Int = (2 * (n * n) - n);
          
			// Display calculated result
			print(" ", result, terminator: "");
			n += 1;
		}
	}
}
func main()
{
	let task: HexagonalNumber = HexagonalNumber();
	// Hexagonal number are
	// —————————————————————————————————————————————
	//  1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
	//  276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
	//  946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
	//  1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
	//  3003, 3160, 3321, 3486, 3655, 3828 ... etc
  
	// k = 10
	task.hexagonalNo(10);
}
main();

Output

  1  6  15  28  45  66  91  120  153  190
// Kotlin program for
// Heptagonal pyramidal number
class HexagonalNumber
{
	fun hexagonalNo(k: Int): Unit
	{
		var n: Int = 1;
		// Print all initial k Hexagonal number
		while (n <= k)
		{
			// Formula
			// (2n² -n)
          
			// Calculate nth hexagonal number
			val result: Int = (2 * (n * n) - n);
          
			// Display calculated result
			print(" " + result);
			n += 1;
		}
	}
}
fun main(args: Array < String > ): Unit
{
	val task: HexagonalNumber = HexagonalNumber();
	// Hexagonal number are
	// —————————————————————————————————————————————
	//  1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 
	//  276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 
	//  946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 
	//  1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 
	//  3003, 3160, 3321, 3486, 3655, 3828 ... etc
  
	// k = 10
	task.hexagonalNo(10);
}

Output

 1 6 15 28 45 66 91 120 153 190




Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

New Comment