Generate all the products of a number in which each element is divisible by the previous element

Here given code implementation process.

// C Program
// Generate all the products of a number in which 
// each element is divisible by the previous element
#include <stdio.h>

// Display result
void printSequence(int result[], int n)
{
	for (int i = 0; i < n; ++i)
	{
		printf("  %d", result[i]);
	}
	printf("\n");
}
void findCombination(int num, int result[], int index, int product)
{
	if (product == num)
	{
		// Display calculated result
		printSequence(result, index);
		return;
	}
	if (index >= num || product > num)
	{
		// Base case when stop process
		return;
	}
	for (int i = 2; i <= num / 2; ++i)
	{
		if (index == 0 || i % result[index - 1] == 0)
		{
			// Collects resultant value
			result[index] = i;
			// Find other combination using recursion
			findCombination(num, result, index + 1, product *i);
		}
	}
}
void combination(int num)
{
	if (num <= 0)
	{
		return;
	}
	if (num == 1)
	{
		printf("\n 1 \n");
		return;
	}
	printf("\n Given Number : %d\n", num);
	// Collect result
	int result[num];
	// Test
	findCombination(num, result, 0, 1);
}
int main()
{
	int num = 56;
	/*
	    num = 56
	    --------
	    2 ⤌ 2 ⤌ 14
	    2 ⤌ 28
	    ---------------
	    Here  2  % 2  == 0   14 % 2 == 0
	          28 % 2 == 0  
	    Element divisible previous element
	*/
	combination(num);
	num = 32;
	/*
	    num = 32
	  ---------------
	  2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
	  2 ⤌ 2 ⤌ 2 ⤌ 4
	  2 ⤌ 2 ⤌ 8
	  2 ⤌ 4 ⤌ 4
	  2 ⤌ 16
	  4 ⤌ 8

	*/
	combination(num);
	num = 11;
	/*
	    num = 11
	---------------
	   None

	*/
	combination(num);
	return 0;
}

Output

 Given Number : 56
  2  2  14
  2  28

 Given Number : 32
  2  2  2  2  2
  2  2  2  4
  2  2  8
  2  4  4
  2  16
  4  8

 Given Number : 11
// Java Program 
// Generate all the products of a number in which 
// each element is divisible by the previous element
public class Combinations
{
	// Display result
	public void printSequence(int[] result, int n)
	{
		for (int i = 0; i < n; ++i)
		{
			System.out.print(" " + result[i]);
		}
		System.out.print("\n");
	}
	public void findCombination(int num, 
                                int[] result, 
      							int index, 
                                int product)
	{
		if (product == num)
		{
			// Display calculated result
			printSequence(result, index);
			return;
		}
		if (index >= num || product > num)
		{
			// Base case when stop process
			return;
		}
		for (int i = 2; i <= num / 2; ++i)
		{
			if (index == 0 || i % result[index - 1] == 0)
			{
				// Collects resultant value
				result[index] = i;
				// Find other combination using recursion
				findCombination(num, result, index + 1, product * i);
			}
		}
	}
	public void combination(int num)
	{
		if (num <= 0)
		{
			return;
		}
		if (num == 1)
		{
			System.out.print("\n 1 \n");
			return;
		}
		System.out.println("\n Given Number : " + num);
		// Collect result
		int[] result = new int[num];
		// Test
		findCombination(num, result, 0, 1);
	}
	public static void main(String args[])
	{
		Combinations task = new Combinations();
		int num = 56;
		/*
			num = 56
			--------
			2 ⤌ 2 ⤌ 14
			2 ⤌ 28
			---------------
			Here  2  % 2  == 0   14 % 2 == 0
			      28 % 2 == 0  
			Element divisible previous element
		*/
		task.combination(num);
		num = 32;
		/*
			num = 32
			---------------
			2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
			2 ⤌ 2 ⤌ 2 ⤌ 4
			2 ⤌ 2 ⤌ 8
			2 ⤌ 4 ⤌ 4
			2 ⤌ 16
			4 ⤌ 8
		*/
		task.combination(num);
		num = 11;
		/*
			num = 11
			---------------
			None
		*/
		task.combination(num);
	}
}

Output

 Given Number : 56
 2 2 14
 2 28

 Given Number : 32
 2 2 2 2 2
 2 2 2 4
 2 2 8
 2 4 4
 2 16
 4 8

 Given Number : 11
// Include header file
#include <iostream>
using namespace std;
// C++ Program
// Generate all the products of a number in which
// each element is divisible by the previous element
class Combinations
{
	public:
		// Display result
		void printSequence(int result[], int n)
		{
			for (int i = 0; i < n; ++i)
			{
				cout << " " << result[i];
			}
			cout << "\n";
		}
	void findCombination(int num, 
                        int result[], 
      					int index, 
                        int product)
	{
		if (product == num)
		{
			// Display calculated result
			this->printSequence(result, index);
			return;
		}
		if (index >= num || product > num)
		{
			// Base case when stop process
			return;
		}
		for (int i = 2; i <= num / 2; ++i)
		{
			if (index == 0 || i % result[index - 1] == 0)
			{
				// Collects resultant value
				result[index] = i;
				// Find other combination using recursion
				this->findCombination(num, 
                                      result, 
                                      index + 1, 
                                      product *i);
			}
		}
	}
	void combination(int num)
	{
		if (num <= 0)
		{
			return;
		}
		if (num == 1)
		{
			cout << "\n 1 \n";
			return;
		}
		cout << "\n Given Number : " << num << endl;
		// Collect result
		int result[num];
		// Test
		this->findCombination(num, result, 0, 1);
	}
};
int main()
{
	Combinations *task = new Combinations();
	int num = 56;
	/*
		num = 56
		--------
		2 ⤌ 2 ⤌ 14
		2 ⤌ 28
		---------------
		Here  2  % 2  == 0   14 % 2 == 0
		      28 % 2 == 0  
		Element divisible previous element
	*/
	task->combination(num);
	num = 32;
	/*
		num = 32
		---------------
		2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
		2 ⤌ 2 ⤌ 2 ⤌ 4
		2 ⤌ 2 ⤌ 8
		2 ⤌ 4 ⤌ 4
		2 ⤌ 16
		4 ⤌ 8
	*/
	task->combination(num);
	num = 11;
	/*
		num = 11
		---------------
		None
	*/
	task->combination(num);
	return 0;
}

Output

 Given Number : 56
 2 2 14
 2 28

 Given Number : 32
 2 2 2 2 2
 2 2 2 4
 2 2 8
 2 4 4
 2 16
 4 8

 Given Number : 11
// Include namespace system
using System;
// Csharp Program
// Generate all the products of a number in which
// each element is divisible by the previous element
public class Combinations
{
	// Display result
	public void printSequence(int[] result, int n)
	{
		for (int i = 0; i < n; ++i)
		{
			Console.Write(" " + result[i]);
		}
		Console.Write("\n");
	}
	public void findCombination(int num, 
                                int[] result, 
     							int index, 
        						int product)
	{
		if (product == num)
		{
			// Display calculated result
			this.printSequence(result, index);
			return;
		}
		if (index >= num || product > num)
		{
			// Base case when stop process
			return;
		}
		for (int i = 2; i <= num / 2; ++i)
		{
			if (index == 0 || i % result[index - 1] == 0)
			{
				// Collects resultant value
				result[index] = i;
				// Find other combination using recursion
				this.findCombination(num, 
                                     result, 
                                     index + 1, 
                                     product * i);
			}
		}
	}
	public void combination(int num)
	{
		if (num <= 0)
		{
			return;
		}
		if (num == 1)
		{
			Console.Write("\n 1 \n");
			return;
		}
		Console.WriteLine("\n Given Number : " + num);
		// Collect result
		int[] result = new int[num];
		// Test
		this.findCombination(num, result, 0, 1);
	}
	public static void Main(String[] args)
	{
		Combinations task = new Combinations();
		int num = 56;
		/*
			num = 56
			--------
			2 ⤌ 2 ⤌ 14
			2 ⤌ 28
			---------------
			Here  2  % 2  == 0   14 % 2 == 0
			      28 % 2 == 0  
			Element divisible previous element
		*/
		task.combination(num);
		num = 32;
		/*
			num = 32
			---------------
			2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
			2 ⤌ 2 ⤌ 2 ⤌ 4
			2 ⤌ 2 ⤌ 8
			2 ⤌ 4 ⤌ 4
			2 ⤌ 16
			4 ⤌ 8
		*/
		task.combination(num);
		num = 11;
		/*
			num = 11
			---------------
			None
		*/
		task.combination(num);
	}
}

Output

 Given Number : 56
 2 2 14
 2 28

 Given Number : 32
 2 2 2 2 2
 2 2 2 4
 2 2 8
 2 4 4
 2 16
 4 8

 Given Number : 11
package main
import "fmt"
// Go Program
// Generate all the products of a number in which
// each element is divisible by the previous element
type Combinations struct {}
func getCombinations() * Combinations {
	var me *Combinations = &Combinations {}
	return me
}
// Display result
func(this Combinations) printSequence(result[] int, n int) {
	for i := 0 ; i < n ; i++ {
		fmt.Print(" ", result[i])
	}
	fmt.Print("\n")
}
func(this Combinations) findCombination(num int, 
	result[] int, index int, product int) {
	if product == num {
		// Display calculated result
		this.printSequence(result, index)
		return
	}
	if index >= num || product > num {
		// Base case when stop process
		return
	}
	for i := 2 ; i <= num / 2 ; i++ {
		if index == 0 || i % result[index - 1] == 0 {
			// Collects resultant value
			result[index] = i
			// Find other combination using recursion
			this.findCombination(num, result, index + 1, product * i)
		}
	}
}
func(this Combinations) combination(num int) {
	if num <= 0 {
		return
	}
	if num == 1 {
		fmt.Print("\n 1 \n")
		return
	}
	fmt.Println("\n Given Number : ", num)
	// Collect result
	var result = make([] int, num)
	// Test
	this.findCombination(num, result, 0, 1)
}
func main() {
	var task * Combinations = getCombinations()
	var num int = 56
	/*
		num = 56
		--------
		2 ⤌ 2 ⤌ 14
		2 ⤌ 28
		---------------
		Here  2  % 2  == 0   14 % 2 == 0
		      28 % 2 == 0  
		Element divisible previous element
	*/
	task.combination(num)
	num = 32
	/*
		num = 32
		---------------
		2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
		2 ⤌ 2 ⤌ 2 ⤌ 4
		2 ⤌ 2 ⤌ 8
		2 ⤌ 4 ⤌ 4
		2 ⤌ 16
		4 ⤌ 8
	*/
	task.combination(num)
	num = 11
	/*
		num = 11
		---------------
		None
	*/
	task.combination(num)
}

Output

 Given Number : 56
 2 2 14
 2 28

 Given Number : 32
 2 2 2 2 2
 2 2 2 4
 2 2 8
 2 4 4
 2 16
 4 8

 Given Number : 11
<?php
// Php Program
// Generate all the products of a number in which
// each element is divisible by the previous element
class Combinations
{
	// Display result
	public	function printSequence($result, $n)
	{
		for ($i = 0; $i < $n; ++$i)
		{
			echo(" ".$result[$i]);
		}
		echo("\n");
	}
	public	function findCombination($num, $result, 
                                      $index, $product)
	{
		if ($product == $num)
		{
			// Display calculated result
			$this->printSequence($result, $index);
			return;
		}
		if ($index >= $num || $product > $num)
		{
			// Base case when stop process
			return;
		}
		for ($i = 2; $i <= (int)($num / 2); ++$i)
		{
			if ($index == 0 || $i % $result[$index - 1] == 0)
			{
				// Collects resultant value
				$result[$index] = $i;
				// Find other combination using recursion
				$this->findCombination($num, $result, 
                                       $index + 1, $product * $i);
			}
		}
	}
	public	function combination($num)
	{
		if ($num <= 0)
		{
			return;
		}
		if ($num == 1)
		{
			echo("\n 1 \n");
			return;
		}
		echo("\n Given Number : ".$num.
			"\n");
		// Collect result
		$result = array_fill(0, $num, 0);
		// Test
		$this->findCombination($num, $result, 0, 1);
	}
}

function main()
{
	$task = new Combinations();
	$num = 56;
	/*
		num = 56
		--------
		2 ⤌ 2 ⤌ 14
		2 ⤌ 28
		---------------
		Here  2  % 2  == 0   14 % 2 == 0
		      28 % 2 == 0  
		Element divisible previous element
	*/
	$task->combination($num);
	$num = 32;
	/*
		num = 32
		---------------
		2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
		2 ⤌ 2 ⤌ 2 ⤌ 4
		2 ⤌ 2 ⤌ 8
		2 ⤌ 4 ⤌ 4
		2 ⤌ 16
		4 ⤌ 8
	*/
	$task->combination($num);
	$num = 11;
	/*
		num = 11
		---------------
		None
	*/
	$task->combination($num);
}
main();

Output

 Given Number : 56
 2 2 14
 2 28

 Given Number : 32
 2 2 2 2 2
 2 2 2 4
 2 2 8
 2 4 4
 2 16
 4 8

 Given Number : 11
// Node JS Program
// Generate all the products of a number in which
// each element is divisible by the previous element
class Combinations
{
	// Display result
	printSequence(result, n)
	{
		for (var i = 0; i < n; ++i)
		{
			process.stdout.write(" " + result[i]);
		}
		process.stdout.write("\n");
	}
	findCombination(num, result, index, product)
	{
		if (product == num)
		{
			// Display calculated result
			this.printSequence(result, index);
			return;
		}
		if (index >= num || product > num)
		{
			// Base case when stop process
			return;
		}
		for (var i = 2; i <= parseInt(num / 2); ++i)
		{
			if (index == 0 || i % result[index - 1] == 0)
			{
				// Collects resultant value
				result[index] = i;
				// Find other combination using recursion
				this.findCombination(num, result, 
                                     index + 1, 
                                     product * i);
			}
		}
	}
	combination(num)
	{
		if (num <= 0)
		{
			return;
		}
		if (num == 1)
		{
			process.stdout.write("\n 1 \n");
			return;
		}
		console.log("\n Given Number : " + num);
		// Collect result
		var result = Array(num).fill(0);
		// Test
		this.findCombination(num, result, 0, 1);
	}
}

function main()
{
	var task = new Combinations();
	var num = 56;
	/*
		num = 56
		--------
		2 ⤌ 2 ⤌ 14
		2 ⤌ 28
		---------------
		Here  2  % 2  == 0   14 % 2 == 0
		      28 % 2 == 0  
		Element divisible previous element
	*/
	task.combination(num);
	num = 32;
	/*
		num = 32
		---------------
		2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
		2 ⤌ 2 ⤌ 2 ⤌ 4
		2 ⤌ 2 ⤌ 8
		2 ⤌ 4 ⤌ 4
		2 ⤌ 16
		4 ⤌ 8
	*/
	task.combination(num);
	num = 11;
	/*
		num = 11
		---------------
		None
	*/
	task.combination(num);
}
main();

Output

 Given Number : 56
 2 2 14
 2 28

 Given Number : 32
 2 2 2 2 2
 2 2 2 4
 2 2 8
 2 4 4
 2 16
 4 8

 Given Number : 11
#  Python 3 Program
#  Generate all the products of a number in which
#  each element is divisible by the previous element
class Combinations :
	#  Display result
	def printSequence(self, result, n) :
		i = 0
		while (i < n) :
			print(" ", result[i], end = "")
			i += 1
		
		print(end = "\n")
	
	def findCombination(self, num, result, index, product) :
		if (product == num) :
			#  Display calculated result
			self.printSequence(result, index)
			return
		
		if (index >= num or product > num) :
			#  Base case when stop process
			return
		
		i = 2
		while (i <= int(num / 2)) :
			if (index == 0 or i % result[index - 1] == 0) :
				#  Collects resultant value
				result[index] = i
				#  Find other combination using recursion
				self.findCombination(num, result, 
                                     index + 1, product * i)
			
			i += 1
		
	
	def combination(self, num) :
		if (num <= 0) :
			return
		
		if (num == 1) :
			print("\n 1 ")
			return
		
		print("\n Given Number : ", num)
		#  Collect result
		result = [0] * (num)
		#  Test
		self.findCombination(num, result, 0, 1)
	

def main() :
	task = Combinations()
	num = 56
	# 	num = 56
	# 	--------
	# 	2 ⤌ 2 ⤌ 14
	# 	2 ⤌ 28
	# 	---------------
	# 	Here  2  % 2  == 0   14 % 2 == 0
	# 	      28 % 2 == 0  
	# 	Element divisible previous element
	task.combination(num)
	num = 32
	# 	num = 32
	# 	---------------
	# 	2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
	# 	2 ⤌ 2 ⤌ 2 ⤌ 4
	# 	2 ⤌ 2 ⤌ 8
	# 	2 ⤌ 4 ⤌ 4
	# 	2 ⤌ 16
	# 	4 ⤌ 8
	task.combination(num)
	num = 11
	# 	num = 11
	# 	---------------
	# 	None
	task.combination(num)

if __name__ == "__main__": main()

Output

 Given Number :  56
  2  2  14
  2  28

 Given Number :  32
  2  2  2  2  2
  2  2  2  4
  2  2  8
  2  4  4
  2  16
  4  8

 Given Number :  11
#  Ruby Program
#  Generate all the products of a number in which
#  each element is divisible by the previous element
class Combinations 
	#  Display result
	def printSequence(result, n) 
		i = 0
		while (i < n) 
			print(" ", result[i])
			i += 1
		end

		print("\n")
	end

	def findCombination(num, result, index, product) 
		if (product == num) 
			#  Display calculated result
			self.printSequence(result, index)
			return
		end

		if (index >= num || product > num) 
			#  Base case when stop process
			return
		end

		i = 2
		while (i <= num / 2) 
			if (index == 0 || i % result[index - 1] == 0) 
				#  Collects resultant value
				result[index] = i
				#  Find other combination using recursion
				self.findCombination(num, result, 
                                     index + 1, product * i)
			end

			i += 1
		end

	end

	def combination(num) 
		if (num <= 0) 
			return
		end

		if (num == 1) 
			print("\n 1 \n")
			return
		end

		print("\n Given Number : ", num, "\n")
		#  Collect result
		result = Array.new(num) {0}
		#  Test
		self.findCombination(num, result, 0, 1)
	end

end

def main() 
	task = Combinations.new()
	num = 56
	# 	num = 56
	# 	--------
	# 	2 ⤌ 2 ⤌ 14
	# 	2 ⤌ 28
	# 	---------------
	# 	Here  2  % 2  == 0   14 % 2 == 0
	# 	      28 % 2 == 0  
	# 	Element divisible previous element
	task.combination(num)
	num = 32
	# 	num = 32
	# 	---------------
	# 	2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
	# 	2 ⤌ 2 ⤌ 2 ⤌ 4
	# 	2 ⤌ 2 ⤌ 8
	# 	2 ⤌ 4 ⤌ 4
	# 	2 ⤌ 16
	# 	4 ⤌ 8
	task.combination(num)
	num = 11
	# 	num = 11
	# 	---------------
	# 	None
	task.combination(num)
end

main()

Output

 Given Number : 56
 2 2 14
 2 28

 Given Number : 32
 2 2 2 2 2
 2 2 2 4
 2 2 8
 2 4 4
 2 16
 4 8

 Given Number : 11
// Scala Program
// Generate all the products of a number in which
// each element is divisible by the previous element
class Combinations()
{
	// Display result
	def printSequence(result: Array[Int], n: Int): Unit = {
		var i: Int = 0;
		while (i < n)
		{
			print(" " + result(i));
			i += 1;
		}
		print("\n");
	}
	def findCombination(num: Int, 
                        result: Array[Int], 
      					index: Int, 
                        product: Int): Unit = {
		if (product == num)
		{
			// Display calculated result
			printSequence(result, index);
			return;
		}
		if (index >= num || product > num)
		{
			// Base case when stop process
			return;
		}
		var i: Int = 2;
		while (i <= num / 2)
		{
			if (index == 0 || i % result(index - 1) == 0)
			{
				// Collects resultant value
				result(index) = i;
				// Find other combination using recursion
				findCombination(num, result, index + 1, product * i);
			}
			i += 1;
		}
	}
	def combination(num: Int): Unit = {
		if (num <= 0)
		{
			return;
		}
		if (num == 1)
		{
			print("\n 1 \n");
			return;
		}
		println("\n Given Number : " + num);
		// Collect result
		var result: Array[Int] = Array.fill[Int](num)(0);
		// Test
		findCombination(num, result, 0, 1);
	}
}
object Main
{
	def main(args: Array[String]): Unit = {
		var task: Combinations = new Combinations();
		var num: Int = 56;
		/*
			num = 56
			--------
			2 ⤌ 2 ⤌ 14
			2 ⤌ 28
			---------------
			Here  2  % 2  == 0   14 % 2 == 0
			      28 % 2 == 0  
			Element divisible previous element
		*/
		task.combination(num);
		num = 32;
		/*
			num = 32
			---------------
			2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
			2 ⤌ 2 ⤌ 2 ⤌ 4
			2 ⤌ 2 ⤌ 8
			2 ⤌ 4 ⤌ 4
			2 ⤌ 16
			4 ⤌ 8
		*/
		task.combination(num);
		num = 11;
		/*
			num = 11
			---------------
			None
		*/
		task.combination(num);
	}
}

Output

 Given Number : 56
 2 2 14
 2 28

 Given Number : 32
 2 2 2 2 2
 2 2 2 4
 2 2 8
 2 4 4
 2 16
 4 8

 Given Number : 11
// Swift 4 Program
// Generate all the products of a number in which
// each element is divisible by the previous element
class Combinations
{
	// Display result
	func printSequence(_ result: [Int], _ n: Int)
	{
		var i: Int = 0;
		while (i < n)
		{
			print(" ", result[i], terminator: "");
			i += 1;
		}
		print(terminator: "\n");
	}
	func findCombination(_ num: Int, 
                         _ result: inout[Int], 
      					 _ index: Int, 
                         _ product: Int)
	{
		if (product == num)
		{
			// Display calculated result
			self.printSequence(result, index);
			return;
		}
		if (index >= num || product > num)
		{
			// Base case when stop process
			return;
		}
		var i: Int = 2;
		while (i <= num / 2)
		{
			if (index == 0 || i % result[index - 1] == 0)
			{
				// Collects resultant value
				result[index] = i;
				// Find other combination using recursion
				self.findCombination(num, &result, index + 1, product * i);
			}
			i += 1;
		}
	}
	func combination(_ num: Int)
	{
		if (num <= 0)
		{
			return;
		}
		if (num == 1)
		{
			print("\n 1 ");
			return;
		}
		print("\n Given Number : ", num);
		// Collect result
		var result: [Int] = Array(repeating: 0, count: num);
		// Test
		self.findCombination(num, &result, 0, 1);
	}
}
func main()
{
	let task: Combinations = Combinations();
	var num: Int = 56;
	/*
		num = 56
		--------
		2 ⤌ 2 ⤌ 14
		2 ⤌ 28
		---------------
		Here  2  % 2  == 0   14 % 2 == 0
		      28 % 2 == 0  
		Element divisible previous element
	*/
	task.combination(num);
	num = 32;
	/*
		num = 32
		---------------
		2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
		2 ⤌ 2 ⤌ 2 ⤌ 4
		2 ⤌ 2 ⤌ 8
		2 ⤌ 4 ⤌ 4
		2 ⤌ 16
		4 ⤌ 8
	*/
	task.combination(num);
	num = 11;
	/*
		num = 11
		---------------
		None
	*/
	task.combination(num);
}
main();

Output

 Given Number :  56
  2  2  14
  2  28

 Given Number :  32
  2  2  2  2  2
  2  2  2  4
  2  2  8
  2  4  4
  2  16
  4  8

 Given Number :  11
// Kotlin Program
// Generate all the products of a number in which
// each element is divisible by the previous element
class Combinations
{
	// Display result
	fun printSequence(result: Array < Int > , n: Int): Unit
	{
		var i: Int = 0;
		while (i < n)
		{
			print(" " + result[i]);
			i += 1;
		}
		print("\n");
	}
	fun findCombination(num: Int, 
                        result: Array < Int > , 
                        index: Int, product: Int): Unit
	{
		if (product == num)
		{
			// Display calculated result
			this.printSequence(result, index);
			return;
		}
		if (index >= num || product > num)
		{
			// Base case when stop process
			return;
		}
		var i: Int = 2;
		while (i <= num / 2)
		{
			if (index == 0 || i % result[index - 1] == 0)
			{
				// Collects resultant value
				result[index] = i;
				// Find other combination using recursion
				this.findCombination(num, result, index + 1, product * i);
			}
			i += 1;
		}
	}
	fun combination(num: Int): Unit
	{
		if (num <= 0)
		{
			return;
		}
		if (num == 1)
		{
			print("\n 1 \n");
			return;
		}
		println("\n Given Number : " + num);
		// Collect result
		val result: Array < Int > = Array(num)
		{
			0
		};
		// Test
		this.findCombination(num, result, 0, 1);
	}
}
fun main(args: Array < String > ): Unit
{
	val task: Combinations = Combinations();
	var num: Int = 56;
	/*
		num = 56
		--------
		2 ⤌ 2 ⤌ 14
		2 ⤌ 28
		---------------
		Here  2  % 2  == 0   14 % 2 == 0
		      28 % 2 == 0  
		Element divisible previous element
	*/
	task.combination(num);
	num = 32;
	/*
		num = 32
		---------------
		2 ⤌ 2 ⤌ 2 ⤌ 2 ⤌ 2
		2 ⤌ 2 ⤌ 2 ⤌ 4
		2 ⤌ 2 ⤌ 8
		2 ⤌ 4 ⤌ 4
		2 ⤌ 16
		4 ⤌ 8
	*/
	task.combination(num);
	num = 11;
	/*
		num = 11
		---------------
		None
	*/
	task.combination(num);
}

Output

 Given Number : 56
 2 2 14
 2 28

 Given Number : 32
 2 2 2 2 2
 2 2 2 4
 2 2 8
 2 4 4
 2 16
 4 8

 Given Number : 11


Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

New Comment







© 2021, kalkicode.com, All rights reserved