# Find the volume of a sphere

A sphere is a three-dimensional geometric object that is perfectly round and symmetric. Finding the volume of a sphere involves calculating the amount of space enclosed within its boundaries. This calculation is important in various fields such as physics, astronomy, and engineering, where spheres are used to represent celestial bodies, particles, and geometric shapes.

## Problem Statement

Given the radius of the sphere, the task is to calculate its volume. The formula for finding the volume of a sphere in terms of its radius 'r' is:

Volume = (4/3) * π * r³

## Example Scenario

Imagine you are an astronomer studying planets. To determine the internal composition and density of a planet, you need to calculate its volume. This calculation helps you understand the planet's overall size and its potential to support various atmospheric and geological phenomena.

## Idea to Solve the Problem

To solve this problem, we can follow these steps:

1. Accept the radius of the sphere as input.
2. Check if the input radius is non-negative.
3. Use the formula to calculate the volume of the sphere.
4. Display the calculated volume.

## Pseudocode

``````function sphere_volume(r):
if r < 0:
return

volume = (4/3) * π * (r * r * r)
return volume

main:

print("Sphere Size [ r :", radius1, "]")
print("Volume :", volume1)

print("Sphere Size [ r :", radius2, "]")
print("Volume :", volume2)

print("Sphere Size [ r :", radius3, "]")
print("Volume :", volume3)

print("Sphere Size [ r :", radius4, "]")
print("Volume :", volume4)``````

## Algorithm Explanation

1. Define a function `sphere_volume` that takes the radius as input.
2. Inside the function, check if the input radius is non-negative. If it's negative, return without calculating the volume.
3. If the radius is non-negative, use the provided formula to calculate the volume of the sphere.
4. In the `main` function, set four test cases with different values for the radius.
5. Calculate the volumes for each test case by calling the `sphere_volume` function.
6. Display the calculated volumes along with their respective radius values.

## Code Solution

``````//C Program
//Find the volume of a sphere
#include <stdio.h>

#include <math.h>
//Calculate volume of sphere by given radius
void sphere_volume(double r)
{
if (r < 0.0)
{
return;
}
// Formula
//  4
// -- πr³
//  3
double volume = 4 * M_PI * (r * r * r) / 3;
//Display result
printf(" Sphere Size [ r : %lf ] ", r);
printf("\n Volume : %lf\n\n", volume);
}
int main()
{
//Test Case
sphere_volume(5);
sphere_volume(9);
sphere_volume(4.3);
sphere_volume(6.7);
return 0;
}``````

#### Output

`````` Sphere Size [ r : 5.000000 ]
Volume : 523.598776

Sphere Size [ r : 9.000000 ]
Volume : 3053.628059

Sphere Size [ r : 4.300000 ]
Volume : 333.038143

Sphere Size [ r : 6.700000 ]
Volume : 1259.833108
``````
``````// Java Program
// Find the volume of a sphere
class Sphere
{
//Calculate volume of sphere by given radius
public void sphere_volume(double r)
{
if (r < 0.0)
{
return;
}
// Formula
//  4
// -- πr³
//  3
double volume = 4 * Math.PI * (r * r * r) / 3;
//Display result
System.out.print(" Sphere Size [ r : " + r + " ] ");
System.out.print("\n Volume : " + volume + "\n\n");
}
public static void main(String[] args)
{
Sphere obj = new Sphere();
//Test Case
obj.sphere_volume(5);
obj.sphere_volume(9);
obj.sphere_volume(4.3);
obj.sphere_volume(6.7);
}
}``````

#### Output

`````` Sphere Size [ r : 5.0 ]
Volume : 523.5987755982989

Sphere Size [ r : 9.0 ]
Volume : 3053.6280592892786

Sphere Size [ r : 4.3 ]
Volume : 333.03814281195156

Sphere Size [ r : 6.7 ]
Volume : 1259.8331083621695
``````
``````// C++ Program
// Find the volume of a sphere
#include<iostream>
#include <math.h>
using namespace std;
class Sphere
{
public:
//Calculate volume of sphere by given radius
void sphere_volume(double r)
{
if (r < 0.0)
{
return;
}
// Formula
//  4
// -- πr³
//  3
double volume = 4 * M_PI *(r *r *r) / 3;
cout << " Sphere Size [ r : " << r << " ] ";
cout << "\n Volume : " << volume << "\n\n";
}
};
int main()
{
Sphere obj ;
//Test Case
obj.sphere_volume(5);
obj.sphere_volume(9);
obj.sphere_volume(4.3);
obj.sphere_volume(6.7);
return 0;
}``````

#### Output

`````` Sphere Size [ r : 5 ]
Volume : 523.599

Sphere Size [ r : 9 ]
Volume : 3053.63

Sphere Size [ r : 4.3 ]
Volume : 333.038

Sphere Size [ r : 6.7 ]
Volume : 1259.83
``````
``````// C# Program
// Find the volume of a sphere
using System;
class Sphere
{
//Calculate volume of sphere by given radius
public void sphere_volume(double r)
{
if (r < 0.0)
{
return;
}
// Formula
//  4
// -- πr³
//  3
double volume = 4 * Math.PI * (r * r * r) / 3;
Console.Write(" Sphere Size [ r : " + r + " ] ");
Console.Write("\n Volume : " + volume + "\n\n");
}
public static void Main(String[] args)
{
Sphere obj = new Sphere();
//Test Case
obj.sphere_volume(5);
obj.sphere_volume(9);
obj.sphere_volume(4.3);
obj.sphere_volume(6.7);
}
}``````

#### Output

`````` Sphere Size [ r : 5 ]
Volume : 523.598775598299

Sphere Size [ r : 9 ]
Volume : 3053.62805928928

Sphere Size [ r : 4.3 ]
Volume : 333.038142811952

Sphere Size [ r : 6.7 ]
Volume : 1259.83310836217
``````
``````<?php
// Php Program
// Find the volume of a sphere
class Sphere
{
//Calculate volume of sphere by given radius
public 	function sphere_volume(\$r)
{
if (\$r < 0.0)
{
return;
}
// Formula
//  4
// -- πr³
//  3
\$volume = 4 * M_PI *(\$r *\$r *\$r) / 3;
//Display result
echo(" Sphere Size [ r : ". \$r ." ] ");
echo("\n Volume : ". \$volume ."\n\n");
}
}

function main()
{
\$obj = new Sphere();
//Test Case
\$obj->sphere_volume(5);
\$obj->sphere_volume(9);
\$obj->sphere_volume(4.3);
\$obj->sphere_volume(6.7);
}
main();``````

#### Output

`````` Sphere Size [ r : 5 ]
Volume : 523.5987755983

Sphere Size [ r : 9 ]
Volume : 3053.6280592893

Sphere Size [ r : 4.3 ]
Volume : 333.03814281195

Sphere Size [ r : 6.7 ]
Volume : 1259.8331083622
``````
``````// Node Js Program
// Find the volume of a sphere
class Sphere
{
//Calculate volume of sphere by given radius
sphere_volume(r)
{
if (r < 0.0)
{
return;
}
// Formula
//  4
// -- πr³
//  3
var volume = 4 *Math.PI *(r *r *r) / 3;
//Display result
process.stdout.write(" Sphere Size [ r : " + r + " ] ");
process.stdout.write("\n Volume : " + volume + "\n\n");
}
}

function main(args)
{
var obj = new Sphere();
//Test Case
obj.sphere_volume(5);
obj.sphere_volume(9);
obj.sphere_volume(4.3);
obj.sphere_volume(6.7);
}
main();``````

#### Output

`````` Sphere Size [ r : 5 ]
Volume : 523.5987755982989

Sphere Size [ r : 9 ]
Volume : 3053.6280592892786

Sphere Size [ r : 4.3 ]
Volume : 333.03814281195156

Sphere Size [ r : 6.7 ]
Volume : 1259.8331083621695
``````
``````#  Python 3 Program
#  Find the volume of a sphere
import math
class Sphere :
# Calculate volume of sphere by given radius
def sphere_volume(self, r) :
if (r < 0.0) :
return

#  Formula
#   4
#  -- πr³
#   3
volume = int(4 * math.pi * (r * r * r) / 3)
# Display result
print(" Sphere Size [ r : ", r ," ] ", end = "")
print("\n Volume : ", volume ,"\n\n", end = "")

def main() :
obj = Sphere()
# Test Case
obj.sphere_volume(5)
obj.sphere_volume(9)
obj.sphere_volume(4.3)
obj.sphere_volume(6.7)

if __name__ == "__main__": main()``````

#### Output

`````` Sphere Size [ r :  5  ]
Volume :  523

Sphere Size [ r :  9  ]
Volume :  3053

Sphere Size [ r :  4.3  ]
Volume :  333

Sphere Size [ r :  6.7  ]
Volume :  1259
``````
``````#  Ruby Program
#  Find the volume of a sphere
class Sphere

# Calculate volume of sphere by given radius
def sphere_volume(r)

if (r < 0.0)

return
end
#  Formula
#   4
#  -- πr³
#   3
volume = 4 * Math::PI * (r * r * r) / 3
# Display result
print(" Sphere Size [ r  :", r ," ] ")
print("\n Volume  :", volume ,"\n\n")
end
end
def main()

obj = Sphere.new()
# Test Case
obj.sphere_volume(5)
obj.sphere_volume(9)
obj.sphere_volume(4.3)
obj.sphere_volume(6.7)
end
main()``````

#### Output

`````` Sphere Size [ r  :5 ]
Volume  :523.5987755982989

Sphere Size [ r  :9 ]
Volume  :3053.6280592892786

Sphere Size [ r  :4.3 ]
Volume  :333.03814281195156

Sphere Size [ r  :6.7 ]
Volume  :1259.8331083621695

``````
``````// Scala Program
// Find the volume of a sphere
class Sphere
{
//Calculate volume of sphere by given radius
def sphere_volume(r: Double): Unit = {
if (r < 0.0)
{
return;
}
// Formula
//  4
// -- πr³
//  3
var volume: Double = 4 * Math.PI * (r * r * r) / 3;
//Display result
print(" Sphere Size [ r : " + r + " ] ");
print("\n Volume : " + volume + "\n\n");
}
}
object Main
{
def main(args: Array[String]): Unit = {
var obj: Sphere = new Sphere();
//Test Case
obj.sphere_volume(5);
obj.sphere_volume(9);
obj.sphere_volume(4.3);
obj.sphere_volume(6.7);
}
}``````

#### Output

`````` Sphere Size [ r : 5.0 ]
Volume : 523.5987755982989

Sphere Size [ r : 9.0 ]
Volume : 3053.6280592892786

Sphere Size [ r : 4.3 ]
Volume : 333.03814281195156

Sphere Size [ r : 6.7 ]
Volume : 1259.8331083621695
``````
``````// Swift Program
// Find the volume of a sphere
class Sphere
{
//Calculate volume of sphere by given radius
func sphere_volume(_ r: Double)
{
if (r < 0.0)
{
return;
}
// Formula
//  4
// -- πr³
//  3
let volume: Double = 4 * Double.pi * (r * r * r) / 3;
//Display result
print(" Sphere Size [ r : ", r ," ] ");
print(" Volume : ", volume ,"\n");
}
}
func main()
{
let obj: Sphere = Sphere();
//Test Case
obj.sphere_volume(5);
obj.sphere_volume(9);
obj.sphere_volume(4.3);
obj.sphere_volume(6.7);
}
main();``````

#### Output

`````` Sphere Size [ r :  5.0  ]
Volume :  523.598775598299

Sphere Size [ r :  9.0  ]
Volume :  3053.62805928928

Sphere Size [ r :  4.3  ]
Volume :  333.038142811952

Sphere Size [ r :  6.7  ]
Volume :  1259.83310836217
``````

## Output Explanation

The code calculates the volume for each test case and displays the results. For a sphere with a radius of 5, the volume is approximately 523.598776. Similarly, for radius 9, the volume is approximately 3053.628059. The third and fourth test cases follow the same pattern.

## Time Complexity

The time complexity of this code is constant O(1) because the calculations involve basic arithmetic operations and the value of π, which are calculated in constant time regardless of the input size. The program performs a fixed number of operations for each test case, making it efficient.

## Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.