Skip to main content

Find the volume of cube

A cube is a three-dimensional geometric shape that has six equal square faces and all angles of 90 degrees. Finding the volume of a cube involves calculating the amount of space enclosed within its boundaries. This calculation is fundamental in various fields, including mathematics, engineering, and manufacturing, where cubes are used to represent regular objects.

Problem Statement

Given the length of an edge of the cube, the task is to calculate its volume. The formula for finding the volume of a cube in terms of its edge length 'e' is:

Volume = e^3

Example Scenario

Imagine you are an architect designing a cubic storage container. To determine the maximum amount of material or capacity the container can hold, you need to calculate its volume. This calculation helps you optimize space utilization and plan storage requirements accurately.

Idea to Solve the Problem

To solve this problem, we can follow these steps:

  1. Accept the length of an edge of the cube as input.
  2. Use the formula to calculate the volume of the cube.
  3. Display the calculated volume.

Pseudocode

function cube_volume(edge):
    volume = edge * edge * edge
    return volume

main:
    edge1 = 7.2
    edge2 = 9
    edge3 = 4
    edge4 = 4.7
    
    volume1 = cube_volume(edge1)
    volume2 = cube_volume(edge2)
    volume3 = cube_volume(edge3)
    volume4 = cube_volume(edge4)
    
    print("Cube Size [ edge :", edge1, "]")
    print("Volume :", volume1)
    
    print("Cube Size [ edge :", edge2, "]")
    print("Volume :", volume2)
    
    print("Cube Size [ edge :", edge3, "]")
    print("Volume :", volume3)
    
    print("Cube Size [ edge :", edge4, "]")
    print("Volume :", volume4)

Algorithm Explanation

  1. Define a function cube_volume that takes the edge length as input.
  2. Inside the function, use the provided formula to calculate the volume of the cube.
  3. In the main function, set four test cases with different values for the edge length.
  4. Calculate the volumes for each test case by calling the cube_volume function.
  5. Display the calculated volumes along with their respective edge lengths.

Code Solution

//C Program
//Find the volume of cube
#include <stdio.h>

//Calculate volume of cube by given edge
void cube_volume(double edge)
{
	// Formula
	// a³  here a is edge
	// edge * edge * edge
	double volume = edge * edge * edge;
	//Display result
	printf(" Cube Size [ edge : %lf] ", edge);
	printf("\n Volume : %lf\n\n", volume);
}
int main()
{
	//Test Case
	cube_volume(7.2);
	cube_volume(9);
	cube_volume(4);
	cube_volume(4.7);
	return 0;
}

Output

 Cube Size [ edge : 7.200000]
 Volume : 373.248000

 Cube Size [ edge : 9.000000]
 Volume : 729.000000

 Cube Size [ edge : 4.000000]
 Volume : 64.000000

 Cube Size [ edge : 4.700000]
 Volume : 103.823000
// Java Program
// Find the volume of cube
class Cube
{
	//Calculate volume of cube by given edge
	public void cube_volume(double edge)
	{
		// Formula
		// a³  here a is edge
		// edge * edge * edge
		double volume = edge * edge * edge;
		//Display result
		System.out.print(" Cube Size [ edge : " + edge + "] ");
		System.out.print("\n Volume  : " + volume + "\n\n");
	}
	public static void main(String[] args)
	{
		Cube obj = new Cube();
		//Test Case
		obj.cube_volume(7.2);
		obj.cube_volume(9);
		obj.cube_volume(4);
		obj.cube_volume(4.7);
	}
}

Output

 Cube Size [ edge : 7.2]
 Volume  : 373.24800000000005

 Cube Size [ edge : 9.0]
 Volume  : 729.0

 Cube Size [ edge : 4.0]
 Volume  : 64.0

 Cube Size [ edge : 4.7]
 Volume  : 103.82300000000002
// C++ Program
// Find the volume of cube
#include<iostream>

using namespace std;
class Cube
{
	public:
		//Calculate volume of cube by given edge
		void cube_volume(double edge)
		{
			// Formula
			// a³  here a is edge
			// edge *edge *edge
			double volume = edge *edge *edge;
			cout << " Cube Size [ edge : " << edge << "] ";
			cout << "\n Volume : " << volume << "\n\n";
		}
};
int main()
{
	Cube obj = Cube();
	//Test Case
	obj.cube_volume(7.2);
	obj.cube_volume(9);
	obj.cube_volume(4);
	obj.cube_volume(4.7);
	return 0;
}

Output

 Cube Size [ edge : 7.2]
 Volume : 373.248

 Cube Size [ edge : 9]
 Volume : 729

 Cube Size [ edge : 4]
 Volume : 64

 Cube Size [ edge : 4.7]
 Volume : 103.823
// C# Program
// Find the volume of cube
using System;
class Cube
{
	//Calculate volume of cube by given edge
	public void cube_volume(double edge)
	{
		// Formula
		// a³  here a is edge
		// edge * edge * edge
		double volume = edge * edge * edge;
		Console.Write(" Cube Size [ edge : " + edge + "] ");
		Console.Write("\n Volume : " + volume + "\n\n");
	}
	public static void Main(String[] args)
	{
		Cube obj = new Cube();
		//Test Case
		obj.cube_volume(7.2);
		obj.cube_volume(9);
		obj.cube_volume(4);
		obj.cube_volume(4.7);
	}
}

Output

 Cube Size [ edge : 7.2]
 Volume : 373.248

 Cube Size [ edge : 9]
 Volume : 729

 Cube Size [ edge : 4]
 Volume : 64

 Cube Size [ edge : 4.7]
 Volume : 103.823
<?php
// Php Program
// Find the volume of cube
class Cube
{
	//Calculate volume of cube by given edge
	public 	function cube_volume($edge)
	{
		// Formula
		// a³  here a is edge
		// edge *edge *edge
		$volume = $edge *$edge *$edge;
		//Display result
		echo(" Cube Size [ edge : ". $edge ."] ");
		echo("\n Volume : ". $volume ."\n\n");
	}
}

function main()
{
	$obj = new Cube();
	//Test Case
	$obj->cube_volume(7.2);
	$obj->cube_volume(9);
	$obj->cube_volume(4);
	$obj->cube_volume(4.7);
}
main();

Output

 Cube Size [ edge : 7.2]
 Volume : 373.248

 Cube Size [ edge : 9]
 Volume : 729

 Cube Size [ edge : 4]
 Volume : 64

 Cube Size [ edge : 4.7]
 Volume : 103.823
// Node Js Program
// Find the volume of cube
class Cube
{
	//Calculate volume of cube by given edge
	cube_volume(edge)
	{
		// Formula
		// a³  here a is edge
		// edge *edge *edge
		var volume = edge *edge *edge;
		//Display result
		process.stdout.write(" Cube Size [ edge : " + edge + "] ");
		process.stdout.write("\n Volume : " + volume + "\n\n");
	}
}

function main(args)
{
	var obj = new Cube();
	//Test Case
	obj.cube_volume(7.2);
	obj.cube_volume(9);
	obj.cube_volume(4);
	obj.cube_volume(4.7);
}
main();

Output

 Cube Size [ edge : 7.2]
 Volume : 373.24800000000005

 Cube Size [ edge : 9]
 Volume : 729

 Cube Size [ edge : 4]
 Volume : 64

 Cube Size [ edge : 4.7]
 Volume : 103.82300000000002
#  Python 3 Program
#  Find the volume of cube
class Cube :
	# Calculate volume of cube by given edge
	def cube_volume(self, edge) :
		#  Formula
		#  a³  here a is edge
		#  edge * edge * edge
		volume = edge * edge * edge
		# Display result
		print(" Cube Size [ edge : ", edge ,"] ")
		print(" Volume : ", volume ,"\n")
	

def main() :
	obj = Cube()
	# Test Case
	obj.cube_volume(7.2)
	obj.cube_volume(9)
	obj.cube_volume(4)
	obj.cube_volume(4.7)


if __name__ == "__main__": main()

Output

 Cube Size [ edge :  7.2 ]
 Volume :  373.24800000000005

 Cube Size [ edge :  9 ]
 Volume :  729

 Cube Size [ edge :  4 ]
 Volume :  64

 Cube Size [ edge :  4.7 ]
 Volume :  103.82300000000002
#  Ruby Program
#  Find the volume of cube
class Cube

	# Calculate volume of cube by given edge
	def cube_volume(edge)
	
		#  Formula
		#  a³  here a is edge
		#  edge * edge * edge
		volume = edge * edge * edge
		# Display result
		print(" Cube Size [ edge  : ", edge ,"] ")
		print("\n Volume  : ", volume ,"\n\n")
	end
end
def main()

	obj = Cube.new()
	# Test Case
	obj.cube_volume(7.2)
	obj.cube_volume(9)
	obj.cube_volume(4)
	obj.cube_volume(4.7)
end
main()

Output

 Cube Size [ edge  : 7.2] 
 Volume  : 373.24800000000005

 Cube Size [ edge  : 9] 
 Volume  : 729

 Cube Size [ edge  : 4] 
 Volume  : 64

 Cube Size [ edge  : 4.7] 
 Volume  : 103.82300000000002

// Scala Program
// Find the volume of cube
class Cube
{
	//Calculate volume of cube by given edge
	def cube_volume(edge: Double): Unit = {
		// Formula
		// a³  here a is edge
		// edge * edge * edge
		var volume: Double = edge * edge * edge;
		//Display result
		print(" Cube Size [ edge : " + edge + "] ");
		print("\n Volume : " + volume + "\n\n");
	}
}
object Main
{
	def main(args: Array[String]): Unit = {
		var obj: Cube = new Cube();
		//Test Case
		obj.cube_volume(7.2);
		obj.cube_volume(9);
		obj.cube_volume(4);
		obj.cube_volume(4.7);
	}
}

Output

 Cube Size [ edge : 7.2]
 Volume : 373.24800000000005

 Cube Size [ edge : 9.0]
 Volume : 729.0

 Cube Size [ edge : 4.0]
 Volume : 64.0

 Cube Size [ edge : 4.7]
 Volume : 103.82300000000002
// Swift Program
// Find the volume of cube
class Cube
{
	//Calculate volume of cube by given edge
	func cube_volume(_ edge: Double)
	{
		// Formula
		// a³  here a is edge
		// edge * edge * edge
		let volume: Double = edge * edge * edge;
		//Display result
		print(" Cube Size [ edge : ", edge ,"] ");
		print(" Volume : ", volume ,"\n");
	}
}
func main()
{
	let obj: Cube = Cube();
	//Test Case
	obj.cube_volume(7.2);
	obj.cube_volume(9);
	obj.cube_volume(4);
	obj.cube_volume(4.7);
}
main();

Output

 Cube Size [ edge :  7.2 ]
 Volume :  373.248

 Cube Size [ edge :  9.0 ]
 Volume :  729.0

 Cube Size [ edge :  4.0 ]
 Volume :  64.0

 Cube Size [ edge :  4.7 ]
 Volume :  103.823

Output Explanation

The code calculates the volume for each test case and displays the results. For a cube with an edge length of 7.2, the volume is 373.248. Similarly, for edge lengths of 9, 4, and 4.7, the volumes are 729, 64, and 103.823, respectively.

Time Complexity

The time complexity of this code is constant O(1) because the calculations involve basic arithmetic operations, which take a constant amount of time regardless of the input size. The program performs a fixed number of operations for each test case, making it efficient.





Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

New Comment