Find the sum of geometric series
Here given code implementation process.
// C program
// Find the sum of geometric series
#include <stdio.h>
#include <math.h>
// Sum of geometric progression series
// a : starting point
// ratio : common ratio
// n : number of element
void sum_gp_element(double a, double ratio, int n)
{
printf("\n [ Start : %lf, Ratio : %lf, N : %d ] ", a, ratio, n);
//Calcuate sum
double sum = (a * (1 - (pow(ratio, n)))) / (1 - ratio);
printf("\n Sum : %lf\n", sum);
}
// Driver code
int main()
{
// Test Cases
sum_gp_element(6, 2, 6);
sum_gp_element(4, 3, 7);
sum_gp_element(4.3, 3, 3);
return 0;
}
//compile the code like this
// compile : gcc -o a test.c -1m
// here test.c is program file
// run : ./a.out
Output
[ Start : 6.000000, Ratio : 2.000000, N : 6 ]
Sum : 378.000000
[ Start : 4.000000, Ratio : 3.000000, N : 7 ]
Sum : 4372.000000
[ Start : 4.300000, Ratio : 3.000000, N : 3 ]
Sum : 55.900000
// Java program
// Find the sum of geometric series
class MyMath
{
// Sum of geometric progression series
// Here
// a : starting point
// ratio : common ratio
// n : number of element
public void sum_gp_element(double a, double ratio, int n)
{
System.out.print("\n [ Start : " + a + ", Ratio : " + ratio + ", N : " + n + " ] ");
//Calcuate sum
double sum = (a * (1 - (Math.pow(ratio, n)))) / (1 - ratio);
System.out.print("\n Sum : " + sum + "\n");
}
public static void main(String[] args)
{
MyMath obj = new MyMath();
// Test Cases
obj.sum_gp_element(6, 2, 6);
obj.sum_gp_element(4, 3, 7);
obj.sum_gp_element(4.3, 3, 3);
}
}
Output
[ Start : 6.0, Ratio : 2.0, N : 6 ]
Sum : 378.0
[ Start : 4.0, Ratio : 3.0, N : 7 ]
Sum : 4372.0
[ Start : 4.3, Ratio : 3.0, N : 3 ]
Sum : 55.9
//Include header file
#include <iostream>
#include<math.h>
using namespace std;
// C++ program
// Find the sum of geometric series
class MyMath
{
public:
// Sum of geometric progression series
// Here
// a : starting point
// ratio : common ratio
// n : number of element
void sum_gp_element(double a, double ratio, int n)
{
cout << "\n [ Start : " << a << ", Ratio : " << ratio << ", N : " << n << " ] ";
//Calcuate sum
double sum = (a * (1 - (pow(ratio, n)))) / (1 - ratio);
cout << "\n Sum : " << sum << "\n";
}
};
int main()
{
MyMath obj = MyMath();
// Test Cases
obj.sum_gp_element(6, 2, 6);
obj.sum_gp_element(4, 3, 7);
obj.sum_gp_element(4.3, 3, 3);
return 0;
}
Output
[ Start : 6, Ratio : 2, N : 6 ]
Sum : 378
[ Start : 4, Ratio : 3, N : 7 ]
Sum : 4372
[ Start : 4.3, Ratio : 3, N : 3 ]
Sum : 55.9
//Include namespace system
using System;
// C# program
// Find the sum of geometric series
class MyMath
{
// Sum of geometric progression series
// Here
// a : starting point
// ratio : common ratio
// n : number of element
public void sum_gp_element(double a, double ratio, int n)
{
Console.Write("\n [ Start : " + a + ", Ratio : " + ratio + ", N : " + n + " ] ");
//Calcuate sum
double sum = (a * (1 - (Math.Pow(ratio, n)))) / (1 - ratio);
Console.Write("\n Sum : " + sum + "\n");
}
public static void Main(String[] args)
{
MyMath obj = new MyMath();
// Test Cases
obj.sum_gp_element(6, 2, 6);
obj.sum_gp_element(4, 3, 7);
obj.sum_gp_element(4.3, 3, 3);
}
}
Output
[ Start : 6, Ratio : 2, N : 6 ]
Sum : 378
[ Start : 4, Ratio : 3, N : 7 ]
Sum : 4372
[ Start : 4.3, Ratio : 3, N : 3 ]
Sum : 55.9
<?php
// Php program
// Find the sum of geometric series
class MyMath
{
// Sum of geometric progression series
// Here
// a : starting point
// ratio : common ratio
// n : number of element
public function sum_gp_element($a, $ratio, $n)
{
echo "\n [ Start : ". $a .", Ratio : ". $ratio .", N : ". $n ." ] ";
//Calcuate sum
$sum = ($a * (1 - (pow($ratio, $n)))) / (1 - $ratio);
echo "\n Sum : ". $sum ."\n";
}
}
function main()
{
$obj = new MyMath();
// Test Cases
$obj->sum_gp_element(6, 2, 6);
$obj->sum_gp_element(4, 3, 7);
$obj->sum_gp_element(4.3, 3, 3);
}
main();
Output
[ Start : 6, Ratio : 2, N : 6 ]
Sum : 378
[ Start : 4, Ratio : 3, N : 7 ]
Sum : 4372
[ Start : 4.3, Ratio : 3, N : 3 ]
Sum : 55.9
// Node Js program
// Find the sum of geometric series
class MyMath
{
// Sum of geometric progression series
// Here
// a : starting point
// ratio : common ratio
// n : number of element
sum_gp_element(a, ratio, n)
{
process.stdout.write("\n [ Start : " + a + ", Ratio : " + ratio + ", N : " + n + " ] ");
//Calcuate sum
var sum = (a * (1 - (Math.pow(ratio, n)))) / (1 - ratio);
process.stdout.write("\n Sum : " + sum + "\n");
}
}
function main()
{
var obj = new MyMath();
// Test Cases
obj.sum_gp_element(6, 2, 6);
obj.sum_gp_element(4, 3, 7);
obj.sum_gp_element(4.3, 3, 3);
}
main();
Output
[ Start : 6, Ratio : 2, N : 6 ]
Sum : 378
[ Start : 4, Ratio : 3, N : 7 ]
Sum : 4372
[ Start : 4.3, Ratio : 3, N : 3 ]
Sum : 55.9
# Python 3 program
# Find the sum of geometric series
class MyMath :
# Sum of geometric progression series
# Here
# a : starting point
# ratio : common ratio
# n : number of element
def sum_gp_element(self, a, ratio, n) :
print("\n [ Start : ", a ,", Ratio : ", ratio ,", N : ", n ," ] ", end = "")
# Calcuate sum
sum = (a * (1 - ((ratio**n)))) / (1 - ratio)
print("\n Sum : ", sum ,"\n", end = "")
def main() :
obj = MyMath()
# Test Cases
obj.sum_gp_element(6, 2, 6)
obj.sum_gp_element(4, 3, 7)
obj.sum_gp_element(4.3, 3, 3)
if __name__ == "__main__": main()
Output
[ Start : 6 , Ratio : 2 , N : 6 ]
Sum : 378.0
[ Start : 4 , Ratio : 3 , N : 7 ]
Sum : 4372.0
[ Start : 4.3 , Ratio : 3 , N : 3 ]
Sum : 55.9
# Ruby program
# Find the sum of geometric series
class MyMath
# Sum of geometric progression series
# Here
# a : starting point
# ratio : common ratio
# n : number of element
def sum_gp_element(a, ratio, n)
print("\n [ Start : ", a ,", Ratio : ", ratio ,", N : ", n ," ] ")
# Calcuate sum
sum = (a * (1 - (ratio**n))) / (1 - ratio)
print("\n Sum : ", sum ,"\n")
end
end
def main()
obj = MyMath.new()
# Test Cases
obj.sum_gp_element(6, 2, 6)
obj.sum_gp_element(4, 3, 7)
obj.sum_gp_element(4.3, 3, 3)
end
main()
Output
[ Start : 6, Ratio : 2, N : 6 ]
Sum : 378
[ Start : 4, Ratio : 3, N : 7 ]
Sum : 4372
[ Start : 4.3, Ratio : 3, N : 3 ]
Sum : 55.9
// Scala program
// Find the sum of geometric series
class MyMath
{
// Sum of geometric progression series
// Here
// a : starting point
// ratio : common ratio
// n : number of element
def sum_gp_element(a: Double, ratio: Double, n: Int): Unit = {
print("\n [ Start : " + a + ", Ratio : " + ratio + ", N : " + n + " ] ");
//Calcuate sum
var sum: Double = a * (1 - (Math.pow(ratio, n))) / (1 - ratio);
print("\n Sum : " + sum + "\n");
}
}
object Main
{
def main(args: Array[String]): Unit = {
var obj: MyMath = new MyMath();
// Test Cases
obj.sum_gp_element(6, 2, 6);
obj.sum_gp_element(4, 3, 7);
obj.sum_gp_element(4.3, 3, 3);
}
}
Output
[ Start : 6.0, Ratio : 2.0, N : 6 ]
Sum : 378.0
[ Start : 4.0, Ratio : 3.0, N : 7 ]
Sum : 4372.0
[ Start : 4.3, Ratio : 3.0, N : 3 ]
Sum : 55.9
import Foundation
// Swift program
// Find the sum of geometric series
class MyMath
{
// Sum of geometric progression series
// Here
// a : starting point
// ratio : common ratio
// n : number of element
func sum_gp_element(_ a: Double, _ ratio: Double, _ n: Int)
{
print("\n [ Start : ", a ,", Ratio : ", ratio ,", N : ", n ," ] ", terminator: "");
//Calcuate sum
let sum: Double = (a * (1 - (pow(ratio, Double(n))))) / (1 - ratio);
print("\n Sum : ", sum ,"\n", terminator: "");
}
}
func main()
{
let obj: MyMath = MyMath();
// Test Cases
obj.sum_gp_element(6, 2, 6);
obj.sum_gp_element(4, 3, 7);
obj.sum_gp_element(4.3, 3, 3);
}
main();
Output
[ Start : 6.0 , Ratio : 2.0 , N : 6 ]
Sum : 378.0
[ Start : 4.0 , Ratio : 3.0 , N : 7 ]
Sum : 4372.0
[ Start : 4.3 , Ratio : 3.0 , N : 3 ]
Sum : 55.9
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment