Posted on by Kalkicode
Code Binary Tree

Find the Sum of all full nodes in a Binary Tree

Here given code implementation process.

/*
    C Program 
    Sum of all full nodes in a Binary Tree
*/

#include <stdio.h>
#include <stdlib.h>

//Binary Tree node
struct Node
{
	int data;
	struct Node *left, *right;
};
//This is creating a binary tree node and return this
struct Node *get_node(int data)
{
	// Create dynamic node
	struct Node *new_node = (struct Node *) malloc(sizeof(struct Node));
	if (new_node != NULL)
	{
		//Set data and pointer values
		new_node->data = data;
		new_node->left = NULL;
		new_node->right = NULL;
	}
	else
	{
		//This is indicates, segmentation fault or memory overflow problem
		printf("Memory Overflow\n");
	}
	//return new node
	return new_node;
}
//Display pre order elements
void preorder(struct Node *node)
{
	if (node != NULL)
	{
		//Print node value
		printf("  %d", node->data);
		preorder(node->left);
		preorder(node->right);
	}
}
// Calculate sum of all full nodes in binary tree. 
// All nodes which is containing both left and right child
int sum_full_nodes(struct Node *node)
{
	int sum = 0;
	if (node != NULL)
	{
		if (node->left != NULL && node->right != NULL)
		{
			sum = node->data;
		}
		// Calculate node sum
		sum += sum_full_nodes(node->left) + sum_full_nodes(node->right);
	}
	return sum;
}
int main()
{
	struct Node *root = NULL;
	/*
	constructor binary tree
	-----------------------

	      6 
	    /   \                           
	   /     \    
	  7       3     
	   \     /  \               
	    8   2    1
	   /  \     / \
	  1    1   4   5
	      /
	     9
	-----------------------
	*/
	root = get_node(6);
	root->left = get_node(7);
	root->left->right = get_node(8);
	root->left->right->right = get_node(1);
	root->left->right->right->left = get_node(9);
	root->left->right->left = get_node(1);
	root->right = get_node(3);
	root->right->left = get_node(2);
	root->right->right = get_node(1);
	root->right->right->right = get_node(5);
	root->right->right->left = get_node(4);
	//Display Tree Element
	printf("\n Tree Nodes : ");
	preorder(root);
	/*
	          6  
	        /   \                           
	       /     \    
	      7       3    
	       \     /  \               
	        8   2    1 
	       /  \     / \
	      1    1   4   5
	          /
	         9
	    -----------------------
	    Full nodes [6,8,3,1]
	    [ Both left and right child exists ]
	            
	          6
	         / \
	        7   3
	        --------
	          8
	         / \ 
	        1   1
	        -------
	          3
	         / \
	        2   1
	        ------
	          1
	         / \
	        4   5 
	*/
	//Display Calculated Result
	printf("\n Full node sum is : %d \n", sum_full_nodes(root));
	return 0;
}

Output

 Tree Nodes :   6  7  8  1  1  9  3  2  1  4  5
 Full node sum is : 18
/*
    Java Program 
    Sum of all full nodes in a Binary Tree
*/
//Binary Tree node
class Node
{
	public int data;
	public Node left;
	public Node right;
	public Node(int data)
	{
		//set node value
		this.data = data;
		this.left = null;
		this.right = null;
	}
}
public class BinaryTree
{
	public Node root;
	public BinaryTree()
	{
		//Set initial tree root to null
		this.root = null;
	}
	//Display pre order elements
	public void preorder(Node node)
	{
		if (node != null)
		{
			//Print node value
			System.out.print("  " + node.data);
			preorder(node.left);
			preorder(node.right);
		}
	}
	// Calculate sum of all full nodes in binary tree. 
	// All nodes which is containing both left and right child
	public int sum_full_nodes(Node node)
	{
		int sum = 0;
		if (node != null)
		{
			if (node.left != null && node.right != null)
			{
				sum = node.data;
			}
			// Calculate node sum
			sum += sum_full_nodes(node.left) + sum_full_nodes(node.right);
		}
		return sum;
	}
	public static void main(String[] args)
	{
		//Make object of binary tree
		BinaryTree tree = new BinaryTree();
		/*
		constructor binary tree
		-----------------------

		      6 
		    /   \                           
		   /     \    
		  7       3     
		   \     /  \               
		    8   2    1
		   /  \     / \
		  1    1   4   5
		      /
		     9
		-----------------------
		*/
		tree.root = new Node(6);
		tree.root.left = new Node(7);
		tree.root.left.right = new Node(8);
		tree.root.left.right.right = new Node(1);
		tree.root.left.right.right.left = new Node(9);
		tree.root.left.right.left = new Node(1);
		tree.root.right = new Node(3);
		tree.root.right.left = new Node(2);
		tree.root.right.right = new Node(1);
		tree.root.right.right.right = new Node(5);
		tree.root.right.right.left = new Node(4);
		//Display Tree Element
		System.out.print("\n Tree Nodes : ");
		tree.preorder(tree.root);
		/*
		      6  
		    /   \                           
		   /     \    
		  7       3    
		   \     /  \               
		    8   2    1 
		   /  \     / \
		  1    1   4   5
		      /
		     9
		-----------------------
		Full nodes [6,8,3,1]
		[ Both left and right child exists ]
		        
		      6
		     / \
		    7   3
		    --------
		      8
		     / \ 
		    1   1
		    -------
		      3
		     / \
		    2   1
		    ------
		      1
		     / \
		    4   5 
		*/
		//Display Calculated Result
		System.out.print("\n Full node sum is : " + tree.sum_full_nodes(tree.root) + " \n");
	}
}

Output

 Tree Nodes :   6  7  8  1  1  9  3  2  1  4  5
 Full node sum is : 18
// Include header file
#include <iostream>
using namespace std;

/*
  C++ Program 
  Sum of all full nodes in a Binary Tree
*/

// Binary Tree node
class Node
{
	public: int data;
	Node *left;
	Node *right;
	Node(int data)
	{
		// set node value
		this->data = data;
		this->left = NULL;
		this->right = NULL;
	}
};
class BinaryTree
{
	public: Node *root;
	BinaryTree()
	{
		// Set initial tree root to null
		this->root = NULL;
	}
	// Display pre order elements
	void preorder(Node *node)
	{
		if (node != NULL)
		{
			// Print node value
			cout << "  " << node->data;
			this->preorder(node->left);
			this->preorder(node->right);
		}
	}
	//  Calculate sum of all full nodes in binary tree.
	//  All nodes which is containing both left and right child
	int sum_full_nodes(Node *node)
	{
		int sum = 0;
		if (node != NULL)
		{
			if (node->left != NULL && node->right != NULL)
			{
				sum = node->data;
			}
			//  Calculate node sum
			sum += this->sum_full_nodes(node->left) + this->sum_full_nodes(node->right);
		}
		return sum;
	}
};
int main()
{
	// Make object of binary tree
	BinaryTree tree = BinaryTree();
	/*
	  		constructor binary tree
	  		-----------------------
	  		      6 
	  		    /   \                           
	  		   /     \    
	  		  7       3     
	  		   \     /  \               
	  		    8   2    1
	  		   /  \     / \
	  		  1    1   4   5
	  		      /
	  		     9
	  		-----------------------
	*/
	tree.root = new Node(6);
	tree.root->left = new Node(7);
	tree.root->left->right = new Node(8);
	tree.root->left->right->right = new Node(1);
	tree.root->left->right->right->left = new Node(9);
	tree.root->left->right->left = new Node(1);
	tree.root->right = new Node(3);
	tree.root->right->left = new Node(2);
	tree.root->right->right = new Node(1);
	tree.root->right->right->right = new Node(5);
	tree.root->right->right->left = new Node(4);
	// Display Tree Element
	cout << "\n Tree Nodes : ";
	tree.preorder(tree.root);
	/*
	  		      6  
	  		    /   \                           
	  		   /     \    
	  		  7       3    
	  		   \     /  \               
	  		    8   2    1 
	  		   /  \     / \
	  		  1    1   4   5
	  		      /
	  		     9
	  		-----------------------
	  		Full nodes [6,8,3,1]
	  		[ Both left and right child exists ]
	  		      6
	  		     / \
	  		    7   3
	  		    --------
	  		      8
	  		     / \ 
	  		    1   1
	  		    -------
	  		      3
	  		     / \
	  		    2   1
	  		    ------
	  		      1
	  		     / \
	  		    4   5 
	*/
	// Display Calculated Result
	cout << "\n Full node sum is : " << tree.sum_full_nodes(tree.root) << " \n";
	return 0;
}

Output

 Tree Nodes :   6  7  8  1  1  9  3  2  1  4  5
 Full node sum is : 18
//Include namespace system
using System;

/*
  C# Program 
  Sum of all full nodes in a Binary Tree
*/

// Binary Tree node
public class Node
{
	public int data;
	public Node left;
	public Node right;
	public Node(int data)
	{
		// set node value
		this.data = data;
		this.left = null;
		this.right = null;
	}
}
public class BinaryTree
{
	public Node root;
	public BinaryTree()
	{
		// Set initial tree root to null
		this.root = null;
	}
	// Display pre order elements
	public void preorder(Node node)
	{
		if (node != null)
		{
			// Print node value
			Console.Write("  " + node.data);
			preorder(node.left);
			preorder(node.right);
		}
	}
	//  Calculate sum of all full nodes in binary tree.
	//  All nodes which is containing both left and right child
	public int sum_full_nodes(Node node)
	{
		int sum = 0;
		if (node != null)
		{
			if (node.left != null && node.right != null)
			{
				sum = node.data;
			}
			//  Calculate node sum
			sum += sum_full_nodes(node.left) + sum_full_nodes(node.right);
		}
		return sum;
	}
	public static void Main(String[] args)
	{
		// Make object of binary tree
		BinaryTree tree = new BinaryTree();
		/*
		  		constructor binary tree
		  		-----------------------
		  		      6 
		  		    /   \                           
		  		   /     \    
		  		  7       3     
		  		   \     /  \               
		  		    8   2    1
		  		   /  \     / \
		  		  1    1   4   5
		  		      /
		  		     9
		  		-----------------------
		*/
		tree.root = new Node(6);
		tree.root.left = new Node(7);
		tree.root.left.right = new Node(8);
		tree.root.left.right.right = new Node(1);
		tree.root.left.right.right.left = new Node(9);
		tree.root.left.right.left = new Node(1);
		tree.root.right = new Node(3);
		tree.root.right.left = new Node(2);
		tree.root.right.right = new Node(1);
		tree.root.right.right.right = new Node(5);
		tree.root.right.right.left = new Node(4);
		// Display Tree Element
		Console.Write("\n Tree Nodes : ");
		tree.preorder(tree.root);
		/*
		  		      6  
		  		    /   \                           
		  		   /     \    
		  		  7       3    
		  		   \     /  \               
		  		    8   2    1 
		  		   /  \     / \
		  		  1    1   4   5
		  		      /
		  		     9
		  		-----------------------
		  		Full nodes [6,8,3,1]
		  		[ Both left and right child exists ]
		  		      6
		  		     / \
		  		    7   3
		  		    --------
		  		      8
		  		     / \ 
		  		    1   1
		  		    -------
		  		      3
		  		     / \
		  		    2   1
		  		    ------
		  		      1
		  		     / \
		  		    4   5 
		*/
		// Display Calculated Result
		Console.Write("\n Full node sum is : " + tree.sum_full_nodes(tree.root) + " \n");
	}
}

Output

 Tree Nodes :   6  7  8  1  1  9  3  2  1  4  5
 Full node sum is : 18
<?php
/*
  Php Program 
  Sum of all full nodes in a Binary Tree
*/

// Binary Tree node
class Node
{
	public $data;
	public $left;
	public $right;

	function __construct($data)
	{
		// set node value
		$this->data = $data;
		$this->left = null;
		$this->right = null;
	}
}
class BinaryTree
{
	public $root;

	function __construct()
	{
		// Set initial tree root to null
		$this->root = null;
	}
	// Display pre order elements
	public	function preorder($node)
	{
		if ($node != null)
		{
			// Print node value
			echo "  ". $node->data;
			$this->preorder($node->left);
			$this->preorder($node->right);
		}
	}
	//  Calculate sum of all full nodes in binary tree.
	//  All nodes which is containing both left and right child
	public	function sum_full_nodes($node)
	{
		$sum = 0;
		if ($node != null)
		{
			if ($node->left != null && $node->right != null)
			{
				$sum = $node->data;
			}
			//  Calculate node sum
			$sum += $this->sum_full_nodes($node->left) + $this->sum_full_nodes($node->right);
		}
		return $sum;
	}
}

function main()
{
	// Make object of binary tree
	$tree = new BinaryTree();
	/*
	  		constructor binary tree
	  		-----------------------
	  		      6 
	  		    /   \                           
	  		   /     \    
	  		  7       3     
	  		   \     /  \               
	  		    8   2    1
	  		   /  \     / \
	  		  1    1   4   5
	  		      /
	  		     9
	  		-----------------------
	*/
	$tree->root = new Node(6);
	$tree->root->left = new Node(7);
	$tree->root->left->right = new Node(8);
	$tree->root->left->right->right = new Node(1);
	$tree->root->left->right->right->left = new Node(9);
	$tree->root->left->right->left = new Node(1);
	$tree->root->right = new Node(3);
	$tree->root->right->left = new Node(2);
	$tree->root->right->right = new Node(1);
	$tree->root->right->right->right = new Node(5);
	$tree->root->right->right->left = new Node(4);
	// Display Tree Element
	echo "\n Tree Nodes : ";
	$tree->preorder($tree->root);
	/*
	  		      6  
	  		    /   \                           
	  		   /     \    
	  		  7       3    
	  		   \     /  \               
	  		    8   2    1 
	  		   /  \     / \
	  		  1    1   4   5
	  		      /
	  		     9
	  		-----------------------
	  		Full nodes [6,8,3,1]
	  		[ Both left and right child exists ]
	  		      6
	  		     / \
	  		    7   3
	  		    --------
	  		      8
	  		     / \ 
	  		    1   1
	  		    -------
	  		      3
	  		     / \
	  		    2   1
	  		    ------
	  		      1
	  		     / \
	  		    4   5 
	*/
	// Display Calculated Result
	echo "\n Full node sum is : ". $tree->sum_full_nodes($tree->root) ." \n";
}
main();

Output

 Tree Nodes :   6  7  8  1  1  9  3  2  1  4  5
 Full node sum is : 18
/*
  Node Js Program 
  Sum of all full nodes in a Binary Tree
*/

// Binary Tree node
class Node
{
	constructor(data)
	{
		// set node value
		this.data = data;
		this.left = null;
		this.right = null;
	}
}
class BinaryTree
{
	constructor()
	{
		// Set initial tree root to null
		this.root = null;
	}
	// Display pre order elements
	preorder(node)
	{
		if (node != null)
		{
			// Print node value
			process.stdout.write("  " + node.data);
			this.preorder(node.left);
			this.preorder(node.right);
		}
	}
	//  Calculate sum of all full nodes in binary tree.
	//  All nodes which is containing both left and right child
	sum_full_nodes(node)
	{
		var sum = 0;
		if (node != null)
		{
			if (node.left != null && node.right != null)
			{
				sum = node.data;
			}
			//  Calculate node sum
			sum += this.sum_full_nodes(node.left) + this.sum_full_nodes(node.right);
		}
		return sum;
	}
}

function main()
{
	// Make object of binary tree
	var tree = new BinaryTree();
	/*
	  		constructor binary tree
	  		-----------------------
	  		      6 
	  		    /   \                           
	  		   /     \    
	  		  7       3     
	  		   \     /  \               
	  		    8   2    1
	  		   /  \     / \
	  		  1    1   4   5
	  		      /
	  		     9
	  		-----------------------
	*/
	tree.root = new Node(6);
	tree.root.left = new Node(7);
	tree.root.left.right = new Node(8);
	tree.root.left.right.right = new Node(1);
	tree.root.left.right.right.left = new Node(9);
	tree.root.left.right.left = new Node(1);
	tree.root.right = new Node(3);
	tree.root.right.left = new Node(2);
	tree.root.right.right = new Node(1);
	tree.root.right.right.right = new Node(5);
	tree.root.right.right.left = new Node(4);
	// Display Tree Element
	process.stdout.write("\n Tree Nodes : ");
	tree.preorder(tree.root);
	/*
	  		      6  
	  		    /   \                           
	  		   /     \    
	  		  7       3    
	  		   \     /  \               
	  		    8   2    1 
	  		   /  \     / \
	  		  1    1   4   5
	  		      /
	  		     9
	  		-----------------------
	  		Full nodes [6,8,3,1]
	  		[ Both left and right child exists ]
	  		      6
	  		     / \
	  		    7   3
	  		    --------
	  		      8
	  		     / \ 
	  		    1   1
	  		    -------
	  		      3
	  		     / \
	  		    2   1
	  		    ------
	  		      1
	  		     / \
	  		    4   5 
	*/
	// Display Calculated Result
	process.stdout.write("\n Full node sum is : " + tree.sum_full_nodes(tree.root) + " \n");
}
main();

Output

 Tree Nodes :   6  7  8  1  1  9  3  2  1  4  5
 Full node sum is : 18
#     Python 3 Program 
#     Sum of all full nodes in a Binary Tree

# Binary Tree node
class Node :
	
	def __init__(self, data) :
		# set node value
		self.data = data
		self.left = None
		self.right = None
	

class BinaryTree :
	
	def __init__(self) :
		# Set initial tree root to null
		self.root = None
	
	# Display pre order elements
	def preorder(self, node) :
		if (node != None) :
			# Print node value
			print("  ", node.data, end = "")
			self.preorder(node.left)
			self.preorder(node.right)
		
	
	#  Calculate sum of all full nodes in binary tree. 
	#  All nodes which is containing both left and right child
	def sum_full_nodes(self, node) :
		sum = 0
		if (node != None) :
			if (node.left != None and node.right != None) :
				sum = node.data
			
			#  Calculate node sum
			sum += self.sum_full_nodes(node.left) + self.sum_full_nodes(node.right)
		
		return sum
	

def main() :
	# Make object of binary tree
	tree = BinaryTree()
	# 
	# 		constructor binary tree
	# 		-----------------------
	# 		      6 
	# 		    /   \                           
	# 		   /     \    
	# 		  7       3     
	# 		   \     /  \               
	# 		    8   2    1
	# 		   /  \     / \
	# 		  1    1   4   5
	# 		      /
	# 		     9
	# 		-----------------------
	# 		
	
	tree.root = Node(6)
	tree.root.left = Node(7)
	tree.root.left.right = Node(8)
	tree.root.left.right.right = Node(1)
	tree.root.left.right.right.left = Node(9)
	tree.root.left.right.left = Node(1)
	tree.root.right = Node(3)
	tree.root.right.left = Node(2)
	tree.root.right.right = Node(1)
	tree.root.right.right.right = Node(5)
	tree.root.right.right.left = Node(4)
	# Display Tree Element
	print("\n Tree Nodes : ", end = "")
	tree.preorder(tree.root)
	# 
	# 		      6  
	# 		    /   \                           
	# 		   /     \    
	# 		  7       3    
	# 		   \     /  \               
	# 		    8   2    1 
	# 		   /  \     / \
	# 		  1    1   4   5
	# 		      /
	# 		     9
	# 		-----------------------
	# 		Full nodes [6,8,3,1]
	# 		[ Both left and right child exists ]
	# 		        
	# 		      6
	# 		     / \
	# 		    7   3
	# 		    --------
	# 		      8
	# 		     / \ 
	# 		    1   1
	# 		    -------
	# 		      3
	# 		     / \
	# 		    2   1
	# 		    ------
	# 		      1
	# 		     / \
	# 		    4   5 
	# 		
	
	# Display Calculated Result
	print("\n Full node sum is : ", tree.sum_full_nodes(tree.root) ," \n", end = "")

if __name__ == "__main__": main()

Output

 Tree Nodes :    6   7   8   1   1   9   3   2   1   4   5
 Full node sum is :  18
#     Ruby Program 
#     Sum of all full nodes in a Binary Tree

# Binary Tree node
class Node  
	# Define the accessor and reader of class Node  
	attr_reader :data, :left, :right
	attr_accessor :data, :left, :right
 
	
	def initialize(data) 
		# set node value
		self.data = data
		self.left = nil
		self.right = nil
	end

end

class BinaryTree  
	# Define the accessor and reader of class BinaryTree  
	attr_reader :root
	attr_accessor :root
 
	
	def initialize() 
		# Set initial tree root to null
		self.root = nil
	end

	# Display pre order elements
	def preorder(node) 
		if (node != nil) 
			# Print node value
			print("  ", node.data)
			self.preorder(node.left)
			self.preorder(node.right)
		end

	end

	#  Calculate sum of all full nodes in binary tree. 
	#  All nodes which is containing both left and right child
	def sum_full_nodes(node) 
		sum = 0
		if (node != nil) 
			if (node.left != nil && node.right != nil) 
				sum = node.data
			end

			#  Calculate node sum
			sum += self.sum_full_nodes(node.left) + self.sum_full_nodes(node.right)
		end

		return sum
	end

end

def main() 
	# Make object of binary tree
	tree = BinaryTree.new()
	# 
	# 		constructor binary tree
	# 		-----------------------
	# 		      6 
	# 		    /   \                           
	# 		   /     \    
	# 		  7       3     
	# 		   \     /  \               
	# 		    8   2    1
	# 		   /  \     / \
	# 		  1    1   4   5
	# 		      /
	# 		     9
	# 		-----------------------
	# 		
	
	tree.root = Node.new(6)
	tree.root.left = Node.new(7)
	tree.root.left.right = Node.new(8)
	tree.root.left.right.right = Node.new(1)
	tree.root.left.right.right.left = Node.new(9)
	tree.root.left.right.left = Node.new(1)
	tree.root.right = Node.new(3)
	tree.root.right.left = Node.new(2)
	tree.root.right.right = Node.new(1)
	tree.root.right.right.right = Node.new(5)
	tree.root.right.right.left = Node.new(4)
	# Display Tree Element
	print("\n Tree Nodes : ")
	tree.preorder(tree.root)
	# 
	# 		      6  
	# 		    /   \                           
	# 		   /     \    
	# 		  7       3    
	# 		   \     /  \               
	# 		    8   2    1 
	# 		   /  \     / \
	# 		  1    1   4   5
	# 		      /
	# 		     9
	# 		-----------------------
	# 		Full nodes [6,8,3,1]
	# 		[ Both left and right child exists ]
	# 		        
	# 		      6
	# 		     / \
	# 		    7   3
	# 		    --------
	# 		      8
	# 		     / \ 
	# 		    1   1
	# 		    -------
	# 		      3
	# 		     / \
	# 		    2   1
	# 		    ------
	# 		      1
	# 		     / \
	# 		    4   5 
	# 		
	
	# Display Calculated Result
	print("\n Full node sum is : ", tree.sum_full_nodes(tree.root) ," \n")
end

main()

Output

 Tree Nodes :   6  7  8  1  1  9  3  2  1  4  5
 Full node sum is : 18 
/*
  Scala Program 
  Sum of all full nodes in a Binary Tree
*/

// Binary Tree node
class Node(var data: Int , var left: Node , var right: Node)
{
	def this(data: Int)
	{
		this(data, null, null);
	}
}
class BinaryTree(var root: Node)
{
	def this()
	{
		this(null);
	}
	// Display pre order elements
	def preorder(node: Node): Unit = {
		if (node != null)
		{
			// Print node value
			print("  " + node.data);
			preorder(node.left);
			preorder(node.right);
		}
	}
	//  Calculate sum of all full nodes in binary tree.
	//  All nodes which is containing both left and right child
	def sum_full_nodes(node: Node): Int = {
		var sum: Int = 0;
		if (node != null)
		{
			if (node.left != null && node.right != null)
			{
				sum = node.data;
			}
			//  Calculate node sum
			sum += sum_full_nodes(node.left) + sum_full_nodes(node.right);
		}
		return sum;
	}
}
object Main
{
	def main(args: Array[String]): Unit = {
		// Make object of binary tree
		var tree: BinaryTree = new BinaryTree();
		/*
		  		constructor binary tree
		  		-----------------------
		  		      6 
		  		    /   \                           
		  		   /     \    
		  		  7       3     
		  		   \     /  \               
		  		    8   2    1
		  		   /  \     / \
		  		  1    1   4   5
		  		      /
		  		     9
		  		-----------------------
		*/
		tree.root = new Node(6);
		tree.root.left = new Node(7);
		tree.root.left.right = new Node(8);
		tree.root.left.right.right = new Node(1);
		tree.root.left.right.right.left = new Node(9);
		tree.root.left.right.left = new Node(1);
		tree.root.right = new Node(3);
		tree.root.right.left = new Node(2);
		tree.root.right.right = new Node(1);
		tree.root.right.right.right = new Node(5);
		tree.root.right.right.left = new Node(4);
		// Display Tree Element
		print("\n Tree Nodes : ");
		tree.preorder(tree.root);
		/*
		  		      6  
		  		    /   \                           
		  		   /     \    
		  		  7       3    
		  		   \     /  \               
		  		    8   2    1 
		  		   /  \     / \
		  		  1    1   4   5
		  		      /
		  		     9
		  		-----------------------
		  		Full nodes [6,8,3,1]
		  		[ Both left and right child exists ]
		  		      6
		  		     / \
		  		    7   3
		  		    --------
		  		      8
		  		     / \ 
		  		    1   1
		  		    -------
		  		      3
		  		     / \
		  		    2   1
		  		    ------
		  		      1
		  		     / \
		  		    4   5 
		*/
		// Display Calculated Result
		print("\n Full node sum is : " + tree.sum_full_nodes(tree.root) + " \n");
	}
}

Output

 Tree Nodes :   6  7  8  1  1  9  3  2  1  4  5
 Full node sum is : 18
/*
  Swift 4 Program 
  Sum of all full nodes in a Binary Tree
*/

// Binary Tree node
class Node
{
	var data: Int;
	var left: Node? ;
	var right: Node? ;
	init(_ data: Int)
	{
		// set node value
		self.data = data;
		self.left = nil;
		self.right = nil;
	}
}
class BinaryTree
{
	var root: Node? ;
	init()
	{
		// Set initial tree root to null
		self.root = nil;
	}
	// Display pre order elements
	func preorder(_ node: Node? )
	{
		if (node != nil)
		{
			// Print node value
			print("  ", node!.data, terminator: "");
			self.preorder(node!.left);
			self.preorder(node!.right);
		}
	}
	//  Calculate sum of all full nodes in binary tree.
	//  All nodes which is containing both left and right child
	func sum_full_nodes(_ node: Node? )->Int
	{
		var sum: Int = 0;
		if (node != nil)
		{
			if (node!.left != nil && node!.right != nil)
			{
				sum = node!.data;
			}
			//  Calculate node sum
			sum += self.sum_full_nodes(node!.left) + self.sum_full_nodes(node!.right);
		}
		return sum;
	}
}
func main()
{
	// Make object of binary tree
	let tree: BinaryTree = BinaryTree();
	/*
  		constructor binary tree
  		-----------------------
  		      6 
  		    /   \                           
  		   /     \    
  		  7       3     
  		   \     /  \               
  		    8   2    1
  		   /  \     / \
  		  1    1   4   5
  		      /
  		     9
  		-----------------------
*/
	tree.root = Node(6);
	tree.root!.left = Node(7);
	tree.root!.left!.right = Node(8);
	tree.root!.left!.right!.right = Node(1);
	tree.root!.left!.right!.right!.left = Node(9);
	tree.root!.left!.right!.left = Node(1);
	tree.root!.right = Node(3);
	tree.root!.right!.left = Node(2);
	tree.root!.right!.right = Node(1);
	tree.root!.right!.right!.right = Node(5);
	tree.root!.right!.right!.left = Node(4);
	// Display Tree Element
	print("\n Tree Nodes : ", terminator: "");
	tree.preorder(tree.root);
	/*
  		      6  
  		    /   \                           
  		   /     \    
  		  7       3    
  		   \     /  \               
  		    8   2    1 
  		   /  \     / \
  		  1    1   4   5
  		      /
  		     9
  		-----------------------
  		Full nodes [6,8,3,1][Both left and right child exists ]6
  		     / \
  		    7   3
  		    --------
  		      8
  		     / \ 
  		    1   1
  		    -------
  		      3
  		     / \
  		    2   1
  		    ------
  		      1
  		     / \
  		    4   5 
*/
	// Display Calculated Result
	print("\n Full node sum is : ", tree.sum_full_nodes(tree.root) ," \n", terminator: "");
}
main();

Output

 Tree Nodes :    6   7   8   1   1   9   3   2   1   4   5
 Full node sum is :  18

Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

New Comment