Posted on by Kalkicode
Code Array

Find the sum of composite elements in array

Here given code implementation process.

// C Program 
// Find the sum of composite elements in array
#include<stdio.h>

//Display elements of given array
void printArray(int arr[], int size)
{
	for (int i = 0; i < size; ++i)
	{
		printf("  %d", arr[i]);
	}
}
//Find all prime numbers which have smaller and equal to given number n
void sieveEratosthenes(int prime[], int n)
{
	if (n <= 1)
	{
		//When n are invalid to prime number 
		return;
	}
	// Loop controlling variables
	int i;
	int j;
	// Initial two numbers are not prime (0 and 1)
	prime[0] = 0;
	prime[1] = 0;
	// Set the initial (2 to n element is prime)
	for (i = 2; i <= n; ++i)
	{
		prime[i] = 1;
	}
	// Initial 0 and 1 are not prime
	// We start to 2
	for (i = 2; i *i <= n; ++i)
	{
		if (prime[i] == 1)
		{
			//When i is prime number
			//Modify the prime status of all next multiplier of location i
			for (j = i *i; j <= n; j += i)
			{
				prime[j] = 0;
			}
		}
	}
}
// Return maximum element in given array
int maxElement(int arr[], int size)
{
	int result = arr[0];
	for (int i = 1; i < size; ++i)
	{
		if (arr[i] > result)
		{
			result = arr[i];
		}
	}
	return result;
}
// Calculate sum of composite number which is exists in given array
void sumCompositeNo(int arr[], int size)
{
	// Display array element
	printf(" Array element \n");
	printArray(arr, size);
	int max = maxElement(arr, size);
	int sum = 0;
	if (max > 3)
	{
		int prime[max + 1];
		// Calculate prime numbers
		sieveEratosthenes(prime, max);
		// Execute loop through by size
		for (int i = 0; i < size; ++i)
		{
			if (arr[i] > 3 && prime[arr[i]] == 0)
			{
				// Sum the Composite elements
				sum += arr[i];
			}
		}
	}
	printf("\n Sum of Composite number is : %d\n", sum);
}
int main(int argc, char const *argv[])
{
	int arr[] = {
		12 , 1 , 4 , -3 , 5 , 7 , 9 , 11 , 16
	};
	// Get the size
	int size = sizeof(arr) / sizeof(arr[0]);
	sumCompositeNo(arr, size);
	return 0;
}

Output

 Array element
  12  1  4  -3  5  7  9  11  16
 Sum of Composite number is : 41
/*
    Java Program
    Find the sum of composite elements in array
*/
public class CompositeNumber
{
	//Display elements of given array
	public void printArray(int[] arr, int size)
    
	{
		for (int i = 0; i < size; ++i)
		{
			System.out.print("  " + arr[i]);
		}
	}
	//Find all prime numbers which have smaller and equal to given number n
	public void sieveEratosthenes(boolean[] prime, int n)
	{
		if (n <= 1)
		{
			//When n are invalid to prime number 
			return;
		}
		// Loop controlling variables
		int i = 0;
		int j = 0;
		// Initial two numbers are not prime (0 and 1)
		prime[0] = false;
		prime[1] = false;
		// Set the initial element is prime
		for (i = 2; i <= n; ++i)
		{
			prime[i] = true;
		}
		// Initial 0 and 1 are not prime
		// We start to 2
		for (i = 2; i * i <= n; ++i)
		{
			if (prime[i] == true)
			{
				//When i is prime number
				//Modify the prime status of all next multiplier of location i
				for (j = i * i; j <= n; j += i)
				{
					prime[j] = false;
				}
			}
		}
	}
	// Return maximum element in given array
	public int maxElement(int[] arr, int size)
	{
		int result = arr[0];
		for (int i = 1; i < size; ++i)
		{
			if (arr[i] > result)
			{
				result = arr[i];
			}
		}
		return result;
	}
	// Calculate sum of composite number which is exists in given array
	public void sumCompositeNo(int[] arr, int size)
	{
		// Display array element
		System.out.print(" Array element \n");
		printArray(arr, size);
		int max = maxElement(arr, size);
		int sum = 0;
		if (max > 3)
		{
			boolean[] prime = new boolean[max + 1];
			// Calculate prime numbers
			sieveEratosthenes(prime, max);
			// Execute loop through by size
			for (int i = 0; i < size; ++i)
			{
				if (arr[i] > 3 && prime[arr[i]] == false)
				{
					// Sum the Composite elements
					sum += arr[i];
				}
			}
		}
		System.out.print("\n Sum of Composite number is : " + sum + "\n");
	}
	public static void main(String[] args)
	{
		CompositeNumber task = new CompositeNumber(); // n = 3
		int[] arr = {
			12 , 1 , 4 , -3 , 5 , 7 , 9 , 11 , 16
		};
		// Get the size
		int size = arr.length;
		task.sumCompositeNo(arr, size);
	}
}

Output

 Array element
  12  1  4  -3  5  7  9  11  16
 Sum of Composite number is : 41
// Include header file
#include <iostream>

using namespace std;
/*
    C++ Program
    Find the sum of composite elements in array
*/
class CompositeNumber
{
	public:
		//Display elements of given array
		void printArray(int arr[], int size)
		{
			for (int i = 0; i < size; ++i)
			{
				cout << "  " << arr[i];
			}
		}
	//Find all prime numbers which have smaller and equal to given number n
	void sieveEratosthenes(bool prime[], int n)
	{
		if (n <= 1)
		{
			//When n are invalid to prime number
			return;
		}
		// Loop controlling variables
		int i = 0;
		int j = 0;
		// Initial two numbers are not prime (0 and 1)
		prime[0] = false;
		prime[1] = false;
		// Set the initial element is prime
		for (i = 2; i <= n; ++i)
		{
			prime[i] = true;
		}
		// Initial 0 and 1 are not prime
		// We start to 2
		for (i = 2; i *i <= n; ++i)
		{
			if (prime[i] == true)
			{
				//When i is prime number
				//Modify the prime status of all next multiplier of location i
				for (j = i *i; j <= n; j += i)
				{
					prime[j] = false;
				}
			}
		}
	}
	// Return maximum element in given array
	int maxElement(int arr[], int size)
	{
		int result = arr[0];
		for (int i = 1; i < size; ++i)
		{
			if (arr[i] > result)
			{
				result = arr[i];
			}
		}
		return result;
	}
	// Calculate sum of composite number which is exists in given array
	void sumCompositeNo(int arr[], int size)
	{
		// Display array element
		cout << " Array element \n";
		this->printArray(arr, size);
		int max = this->maxElement(arr, size);
		int sum = 0;
		if (max > 3)
		{
			bool prime[max + 1];
			// Calculate prime numbers
			this->sieveEratosthenes(prime, max);
			// Execute loop through by size
			for (int i = 0; i < size; ++i)
			{
				if (arr[i] > 3 && prime[arr[i]] == false)
				{
					// Sum the Composite elements
					sum += arr[i];
				}
			}
		}
		cout << "\n Sum of Composite number is : " << sum << "\n";
	}
};
int main()
{
	CompositeNumber task = CompositeNumber();
	// n = 3
	int arr[] = {
		12 , 1 , 4 , -3 , 5 , 7 , 9 , 11 , 16
	};
	// Get the size
	int size = sizeof(arr) / sizeof(arr[0]);
	task.sumCompositeNo(arr, size);
	return 0;
}

Output

 Array element
  12  1  4  -3  5  7  9  11  16
 Sum of Composite number is : 41
// Include namespace system
using System;
/*
    C# Program
    Find the sum of composite elements in array
*/
public class CompositeNumber
{
	//Display elements of given array
	public void printArray(int[] arr, int size)
	{
		for (int i = 0; i < size; ++i)
		{
			Console.Write("  " + arr[i]);
		}
	}
	//Find all prime numbers which have smaller and equal to given number n
	public void sieveEratosthenes(Boolean[] prime, int n)
	{
		if (n <= 1)
		{
			//When n are invalid to prime number
			return;
		}
		// Loop controlling variables
		int i = 0;
		int j = 0;
		// Initial two numbers are not prime (0 and 1)
		prime[0] = false;
		prime[1] = false;
		// Set the initial element is prime
		for (i = 2; i <= n; ++i)
		{
			prime[i] = true;
		}
		// Initial 0 and 1 are not prime
		// We start to 2
		for (i = 2; i * i <= n; ++i)
		{
			if (prime[i] == true)
			{
				//When i is prime number
				//Modify the prime status of all next multiplier of location i
				for (j = i * i; j <= n; j += i)
				{
					prime[j] = false;
				}
			}
		}
	}
	// Return maximum element in given array
	public int maxElement(int[] arr, int size)
	{
		int result = arr[0];
		for (int i = 1; i < size; ++i)
		{
			if (arr[i] > result)
			{
				result = arr[i];
			}
		}
		return result;
	}
	// Calculate sum of composite number which is exists in given array
	public void sumCompositeNo(int[] arr, int size)
	{
		// Display array element
		Console.Write(" Array element \n");
		printArray(arr, size);
		int max = maxElement(arr, size);
		int sum = 0;
		if (max > 3)
		{
			Boolean[] prime = new Boolean[max + 1];
			// Calculate prime numbers
			sieveEratosthenes(prime, max);
			// Execute loop through by size
			for (int i = 0; i < size; ++i)
			{
				if (arr[i] > 3 && prime[arr[i]] == false)
				{
					// Sum the Composite elements
					sum += arr[i];
				}
			}
		}
		Console.Write("\n Sum of Composite number is : " + sum + "\n");
	}
	public static void Main(String[] args)
	{
		CompositeNumber task = new CompositeNumber();
		// n = 3
		int[] arr = {
			12 , 1 , 4 , -3 , 5 , 7 , 9 , 11 , 16
		};
		// Get the size
		int size = arr.Length;
		task.sumCompositeNo(arr, size);
	}
}

Output

 Array element
  12  1  4  -3  5  7  9  11  16
 Sum of Composite number is : 41
<?php
/*
    Php Program
    Find the sum of composite elements in array
*/
class CompositeNumber
{
	//Display elements of given array
	public	function printArray( & $arr, $size)
	{
		for ($i = 0; $i < $size; ++$i)
		{
			echo "  ". $arr[$i];
		}
	}
	//Find all prime numbers which have smaller and equal to given number n
	public	function sieveEratosthenes( & $prime, $n)
	{
		if ($n <= 1)
		{
			//When n are invalid to prime number
			return;
		}
		// Loop controlling variables
		$i = 0;
		$j = 0;
		// Initial two numbers are not prime (0 and 1)
		$prime[0] = false;
		$prime[1] = false;
		// Initial 0 and 1 are not prime
		// We start to 2
		for ($i = 2; $i * $i <= $n; ++$i)
		{
			if ($prime[$i] == true)
			{
				//When i is prime number
				//Modify the prime status of all next multiplier of location i
				for ($j = $i * $i; $j <= $n; $j += $i)
				{
					$prime[$j] = false;
				}
			}
		}
	}
	// Return maximum element in given array
	public	function maxElement( & $arr, $size)
	{
		$result = $arr[0];
		for ($i = 1; $i < $size; ++$i)
		{
			if ($arr[$i] > $result)
			{
				$result = $arr[$i];
			}
		}
		return $result;
	}
	// Calculate sum of composite number which is exists in given array
	public	function sumCompositeNo( & $arr, $size)
	{
		// Display array element
		echo " Array element \n";
		$this->printArray($arr, $size);
		$max = $this->maxElement($arr, $size);
		$sum = 0;
		if ($max > 3)
		{
			$prime = array_fill(0, $max + 1, true);
			// Calculate prime numbers
			$this->sieveEratosthenes($prime, $max);
			// Execute loop through by size
			for ($i = 0; $i < $size; ++$i)
			{
				if ($arr[$i] > 3 && $prime[$arr[$i]] == false)
				{
					// Sum the Composite elements
					$sum += $arr[$i];
				}
			}
		}
		echo "\n Sum of Composite number is : ". $sum ."\n";
	}
}

function main()
{
	$task = new CompositeNumber();
	// n = 3
	$arr = array(12, 1, 4, -3, 5, 7, 9, 11, 16);
	// Get the size
	$size = count($arr);
	$task->sumCompositeNo($arr, $size);
}
main();

Output

 Array element
  12  1  4  -3  5  7  9  11  16
 Sum of Composite number is : 41
/*
    Node Js Program
    Find the sum of composite elements in array
*/
class CompositeNumber
{
	//Display elements of given array
	printArray(arr, size)
	{
		for (var i = 0; i < size; ++i)
		{
			process.stdout.write("  " + arr[i]);
		}
	}
	//Find all prime numbers which have smaller and equal to given number n
	sieveEratosthenes(prime, n)
	{
		if (n <= 1)
		{
			//When n are invalid to prime number
			return;
		}
		// Loop controlling variables
		var i = 0;
		var j = 0;
		// Initial two numbers are not prime (0 and 1)
		prime[0] = false;
		prime[1] = false;
		// Initial 0 and 1 are not prime
		// We start to 2
		for (i = 2; i * i <= n; ++i)
		{
			if (prime[i] == true)
			{
				//When i is prime number
				//Modify the prime status of all next multiplier of location i
				for (j = i * i; j <= n; j += i)
				{
					prime[j] = false;
				}
			}
		}
	}
	// Return maximum element in given array
	maxElement(arr, size)
	{
		var result = arr[0];
		for (var i = 1; i < size; ++i)
		{
			if (arr[i] > result)
			{
				result = arr[i];
			}
		}
		return result;
	}
	// Calculate sum of composite number which is exists in given array
	sumCompositeNo(arr, size)
	{
		// Display array element
		process.stdout.write(" Array element \n");
		this.printArray(arr, size);
		var max = this.maxElement(arr, size);
		var sum = 0;
		if (max > 3)
		{
			var prime = Array(max + 1).fill(true);
			// Calculate prime numbers
			this.sieveEratosthenes(prime, max);
			// Execute loop through by size
			for (var i = 0; i < size; ++i)
			{
				if (arr[i] > 3 && prime[arr[i]] == false)
				{
					// Sum the Composite elements
					sum += arr[i];
				}
			}
		}
		process.stdout.write("\n Sum of Composite number is : " + sum + "\n");
	}
}

function main()
{
	var task = new CompositeNumber();
	// n = 3
	var arr = [12, 1, 4, -3, 5, 7, 9, 11, 16];
	// Get the size
	var size = arr.length;
	task.sumCompositeNo(arr, size);
}
main();

Output

 Array element
  12  1  4  -3  5  7  9  11  16
 Sum of Composite number is : 41
#  Python 3 Program
#  Find the sum of composite elements in array

class CompositeNumber :
	# Display elements of given array
	def printArray(self, arr, size) :
		i = 0
		while (i < size) :
			print("  ", arr[i], end = "")
			i += 1
		
	
	# Find all prime numbers which have smaller and equal to given number n
	def sieveEratosthenes(self, prime, n) :
		if (n <= 1) :
			# When n are invalid to prime number
			return
		
		#  Initial two numbers are not prime (0 and 1)
		prime[0] = False
		prime[1] = False
		#  Initial 0 and 1 are not prime
		#  We start to 2
		#  Loop controlling variables
		i = 2
		j = 0
		while (i * i <= n) :
			if (prime[i] == True) :
				# When i is prime number
				# Modify the prime status of all next multiplier of location i
				j = i * i
				while (j <= n) :
					prime[j] = False
					j += i
				
			
			i += 1
		
	
	#  Return maximum element in given array
	def maxElement(self, arr, size) :
		result = arr[0]
		i = 1
		while (i < size) :
			if (arr[i] > result) :
				result = arr[i]
			
			i += 1
		
		return result
	
	#  Calculate sum of composite number which is exists in given array
	def sumCompositeNo(self, arr, size) :
		#  Display array element
		print(" Array element ")
		self.printArray(arr, size)
		max = self.maxElement(arr, size)
		sum = 0
		if (max > 3) :
			prime = [True] * (max + 1)
			#  Calculate prime numbers
			self.sieveEratosthenes(prime, max)
			#  Execute loop through by size
			i = 0
			while (i < size) :
				if (arr[i] > 3 and prime[arr[i]] == False) :
					#  Sum the Composite elements
					sum += arr[i]
				
				i += 1
			
		
		print("\n Sum of Composite number is : ", sum )
	

def main() :
	task = CompositeNumber()
	#  n = 3
	arr = [12, 1, 4, -3, 5, 7, 9, 11, 16]
	#  Get the size
	size = len(arr)
	task.sumCompositeNo(arr, size)

if __name__ == "__main__": main()

Output

 Array element
   12   1   4   -3   5   7   9   11   16
 Sum of Composite number is :  41
#   Ruby Program
#   Find the sum of composite elements in array

class CompositeNumber 
	# Display elements of given array
	def printArray(arr, size) 
		i = 0
		while (i < size) 
			print("  ", arr[i])
			i += 1
		end

	end

	# Find all prime numbers which have smaller and equal to given number n
	def sieveEratosthenes(prime, n) 
		if (n <= 1) 
			# When n are invalid to prime number
			return
		end

		#  Initial two numbers are not prime (0 and 1)
		prime[0] = false
		prime[1] = false
		#  Initial 0 and 1 are not prime
		#  We start to 2
		#  Loop controlling variables
		i = 2
		j = 0
		while (i * i <= n) 
			if (prime[i] == true) 
				# When i is prime number
				# Modify the prime status of all next multiplier of location i
				j = i * i
				while (j <= n) 
					prime[j] = false
					j += i
				end

			end

			i += 1
		end

	end

	#  Return maximum element in given array
	def maxElement(arr, size) 
		result = arr[0]
		i = 1
		while (i < size) 
			if (arr[i] > result) 
				result = arr[i]
			end

			i += 1
		end

		return result
	end

	#  Calculate sum of composite number which is exists in given array
	def sumCompositeNo(arr, size) 
		#  Display array element
		print(" Array element \n")
		self.printArray(arr, size)
		max = self.maxElement(arr, size)
		sum = 0
		if (max > 3) 
			prime = Array.new(max + 1) {true}
			#  Calculate prime numbers
			i = 0
			self.sieveEratosthenes(prime, max)
			#  Execute loop through by size
			while (i < size) 
				if (arr[i] > 3 && prime[arr[i]] == false) 
					#  Sum the Composite elements
					sum += arr[i]
				end

				i += 1
			end

		end

		print("\n Sum of Composite number is : ", sum ,"\n")
	end

end

def main() 
	task = CompositeNumber.new()
	#  n = 3
	arr = [12, 1, 4, -3, 5, 7, 9, 11, 16]
	#  Get the size
	size = arr.length
	task.sumCompositeNo(arr, size)
end

main()

Output

 Array element 
  12  1  4  -3  5  7  9  11  16
 Sum of Composite number is : 41
/*
    Scala Program
    Find the sum of composite elements in array
*/
class CompositeNumber
{
	//Display elements of given array
	def printArray(arr: Array[Int], size: Int): Unit = {
		var i: Int = 0;
		while (i < size)
		{
			print("  " + arr(i));
			i += 1;
		}
	}
	//Find all prime numbers which have smaller and equal to given number n
	def sieveEratosthenes(prime: Array[Boolean], n: Int): Unit = {
		if (n <= 1)
		{
			//When n are invalid to prime number
			return;
		}
		// Initial two numbers are not prime (0 and 1)
		prime(0) = false;
		prime(1) = false;
		// Initial 0 and 1 are not prime
		// We start to 2
		// Loop controlling variables
		var i: Int = 2;
		var j: Int = 0;
		while (i * i <= n)
		{
			if (prime(i) == true)
			{
				//When i is prime number
				//Modify the prime status of all next multiplier of location i
				j = i * i;
				while (j <= n)
				{
					prime(j) = false;
					j += i;
				}
			}
			i += 1;
		}
	}
	// Return maximum element in given array
	def maxElement(arr: Array[Int], size: Int): Int = {
		var result: Int = arr(0);
		var i: Int = 1;
		while (i < size)
		{
			if (arr(i) > result)
			{
				result = arr(i);
			}
			i += 1;
		}
		return result;
	}
	// Calculate sum of composite number which is exists in given array
	def sumCompositeNo(arr: Array[Int], size: Int): Unit = {
		// Display array element
		print(" Array element \n");
		this.printArray(arr, size);
		var max: Int = this.maxElement(arr, size);
		var sum: Int = 0;
		if (max > 3)
		{
			var prime: Array[Boolean] = Array.fill[Boolean](max + 1)(true);
			// Calculate prime numbers
			var i: Int = 0;
			this.sieveEratosthenes(prime, max);
			// Execute loop through by size
			while (i < size)
			{
				if (arr(i) > 3 && prime(arr(i)) == false)
				{
					// Sum the Composite elements
					sum += arr(i);
				}
				i += 1;
			}
		}
		print("\n Sum of Composite number is : " + sum + "\n");
	}
}
object Main
{
	def main(args: Array[String]): Unit = {
		var task: CompositeNumber = new CompositeNumber();
		// n = 3
		var arr: Array[Int] = Array(12, 1, 4, -3, 5, 7, 9, 11, 16);
		// Get the size
		var size: Int = arr.length;
		task.sumCompositeNo(arr, size);
	}
}

Output

 Array element
  12  1  4  -3  5  7  9  11  16
 Sum of Composite number is : 41
/*
    Swift 4 Program
    Find the sum of composite elements in array
*/
class CompositeNumber
{
	//Display elements of given array
	func printArray(_ arr: [Int], _ size: Int)
	{
		var i: Int = 0;
		while (i < size)
		{
			print("  ", arr[i], terminator: "");
			i += 1;
		}
	}
	//Find all prime numbers which have smaller and equal to given number n
	func sieveEratosthenes(_ prime: inout[Bool], _ n: Int)
	{
		if (n <= 1)
		{
			//When n are invalid to prime number
			return;
		}
		// Initial two numbers are not prime (0 and 1)
		prime[0] = false;
		prime[1] = false;
		// Initial 0 and 1 are not prime
		// We start to 2
		// Loop controlling variables
		var i: Int = 2;
		var j: Int = 0;
		while (i * i <= n)
		{
			if (prime[i] == true)
			{
				//When i is prime number
				//Modify the prime status of all next multiplier of location i
				j = i * i;
				while (j <= n)
				{
					prime[j] = false;
					j += i;
				}
			}
			i += 1;
		}
	}
	// Return maximum element in given array
	func maxElement(_ arr: [Int], _ size: Int)->Int
	{
		var result: Int = arr[0];
		var i: Int = 1;
		while (i < size)
		{
			if (arr[i] > result)
			{
				result = arr[i];
			}
			i += 1;
		}
		return result;
	}
	// Calculate sum of composite number which is exists in given array
	func sumCompositeNo(_ arr: [Int], _ size: Int)
	{
		// Display array element
		print(" Array element ");
		self.printArray(arr, size);
		let max: Int = self.maxElement(arr, size);
		var sum: Int = 0;
		if (max > 3)
		{
			var prime: [Bool] = Array(repeating: true, count: max + 1);
			// Calculate prime numbers
			var i: Int = 0;
			self.sieveEratosthenes(&prime, max);
			// Execute loop through by size
			while (i < size)
			{
				if (arr[i] > 3 && prime[arr[i]] == false)
				{
					// Sum the Composite elements
					sum += arr[i];
				}
				i += 1;
			}
		}
		print("\n Sum of Composite number is : ", sum );
	}
}
func main()
{
	let task: CompositeNumber = CompositeNumber();
	// n = 3
	let arr: [Int] = [12, 1, 4, -3, 5, 7, 9, 11, 16];
	// Get the size
	let size: Int = arr.count;
	task.sumCompositeNo(arr, size);
}
main();

Output

 Array element
   12   1   4   -3   5   7   9   11   16
 Sum of Composite number is :  41
/*
    Kotlin Program
    Find the sum of composite elements in array
*/
class CompositeNumber
{
	//Display elements of given array
	fun printArray(arr: Array <Int> , size: Int): Unit
	{
		var i: Int = 0;
		while (i < size)
		{
			print("  " + arr[i]);
			i += 1;
		}
	}
	//Find all prime numbers which have smaller and equal to given number n
	fun sieveEratosthenes(prime: Array <Boolean> , n: Int): Unit
	{
		if (n <= 1)
		{
			//When n are invalid to prime number
			return;
		}
		// Initial two numbers are not prime (0 and 1)
		prime[0] = false;
		prime[1] = false;
		// Initial 0 and 1 are not prime
		// We start to 2
		// Loop controlling variables
		var i: Int = 2;
		var j: Int ;
		while (i * i <= n)
		{
			if (prime[i] == true)
			{
				//When i is prime number
				//Modify the prime status of all next multiplier of location i
				j = i * i;
				while (j <= n)
				{
					prime[j] = false;
					j += i;
				}
			}
			i += 1;
		}
	}
	// Return maximum element in given array
	fun maxElement(arr: Array <Int> , size: Int): Int
	{
		var result: Int = arr[0];
		var i: Int = 1;
		while (i < size)
		{
			if (arr[i] > result)
			{
				result = arr[i];
			}
			i += 1;
		}
		return result;
	}
	// Calculate sum of composite number which is exists in given array
	fun sumCompositeNo(arr: Array <Int> , size: Int): Unit
	{
		// Display array element
		print(" Array element \n");
		this.printArray(arr, size);
		var max: Int = this.maxElement(arr, size);
		var sum: Int = 0;
		if (max > 3)
		{
			var prime: Array <Boolean> = Array(max + 1)
			{
				true
			};
			// Calculate prime numbers
			var i: Int = 0;
			this.sieveEratosthenes(prime, max);
			// Execute loop through by size
			while (i < size)
			{
				if (arr[i] > 3 && prime[arr[i]] == false)
				{
					// Sum the Composite elements
					sum += arr[i];
				}
				i += 1;
			}
		}
		print("\n Sum of Composite number is : " + sum + "\n");
	}
}
fun main(args: Array < String > ): Unit
{
	var task: CompositeNumber = CompositeNumber();
	// n = 3
	var arr: Array < Int > = arrayOf(12, 1, 4, -3, 5, 7, 9, 11, 16);
	// Get the size
	var size: Int = arr.count();
	task.sumCompositeNo(arr, size);
}

Output

 Array element
  12  1  4  -3  5  7  9  11  16
 Sum of Composite number is : 41

Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

New Comment