# Find square root of quadratic equation

Here given code implementation process.

``````//  C program
//  Find square root of quadratic equation
#include <stdio.h>
#include <math.h>

void squareRoot(float a, float b, float c)
{

/*            _______
−b ± √b2−4ac
x = ————————————
2a
*/
// Calculate polynomial with an order of 2
// ax²+bx+c = 0

float discriminant = (b * b) - (4 * a * c);

float r1 = 0.0;
float r2 = 0.0;

// Display parameter
printf("\n Given a : %f",a);
printf("\n Given b : %f",b);
printf("\n Given c : %f",c);

if(discriminant == 0)
{
// When (b²−4ac) == 0

r1 = (-b) / (2 * a);

r2 = r1;

// Print two equal and real roots
printf("\n X =  %f ",r1);
printf("\n X =  %f ",r2);
}
else
{

if(discriminant > 0)
{
// When (b²−4ac) > 0

r1 = ((-b) + sqrt(discriminant)) / (2 * a);
r2 = ((-b) - sqrt(discriminant)) / (2 * a);

// Print two distinct and real roots
printf("\n X =  %f ",r1);
printf("\n X =  %f ",r2);
}
else
{
// (b²−4ac) < 0

float imaginary = sqrt(-discriminant) / (2 * a);

r1 = (-b) / (2 * a);
r2 = r1;
// Print two distinct complex roots
printf("\n X =  %f + %fi ",r1, imaginary);
printf("\n X =  %f - %fi ",r2, imaginary);
}
}
printf("\n");
}
int main(int argc, char
const *argv[])
{

// Case A
// 4x²+8x+4 = 0
// a = 4, b = 8, c = 4
squareRoot(4, 8, 4);

// Case B
// 7x²+3x+2 = 0
// a = 7, b = 3, c= 2
squareRoot( 7, 3, 2);

// Case C
// 5x²+7x+2 = 0
// a = 5, b = 7, c = 2
squareRoot(5, 7, 2);
return 0;
}

``````

#### Output

`````` Given a : 4.000000
Given b : 8.000000
Given c : 4.000000
X =  -1.000000
X =  -1.000000

Given a : 7.000000
Given b : 3.000000
Given c : 2.000000
X =  -0.214286 + 0.489690i
X =  -0.214286 - 0.489690i

Given a : 5.000000
Given b : 7.000000
Given c : 2.000000
X =  -0.400000
X =  -1.000000``````
``````/*
Java program
Find square root of quadratic equation
*/
{
public void squareRoot(double a, double b, double c)
{
//            _______
//      −b ± √b2−4ac
//  x = ————————————
//          2a
//
// Calculate polynomial with an order of 2
// ax²+bx+c = 0
double discriminant = (b * b) - (4 * a * c);
double r1 = 0.0;
double r2 = 0.0;
// Display parameter
System.out.print("\n Given a : " + a );
System.out.print("\n Given b : " + b );
System.out.print("\n Given c : " + c );
if (discriminant == 0)
{
// When (b²−4ac) == 0
r1 = (-b) / (2 * a);
r2 = r1;
// Print two equal and real roots
System.out.print("\n X = " + r1 );
System.out.print("\n X = " + r2 );
}
else
{
if (discriminant > 0)
{
// When (b²−4ac) > 0
r1 = ((-b) + Math.sqrt(discriminant)) / (2 * a);
r2 = ((-b) - Math.sqrt(discriminant)) / (2 * a);
// Print two distinct and real roots
System.out.print("\n X = " + r1 );
System.out.print("\n X = " + r2 );
}
else
{
// (b²−4ac) < 0
double imaginary = Math.sqrt(-discriminant) / (2 * a);
r1 = (-b) / (2 * a);
r2 = r1;
// Print two distinct complex roots
System.out.print("\n X = " + r1 + " + " + imaginary + "i ");
System.out.print("\n X = " + r2 + " - " + imaginary + "i ");
}
}
System.out.print("\n");
}
public static void main(String[] args)
{

// Case A
// 4x²+8x+4 = 0
// a = 4, b = 8, c = 4

// Case B
// 7x²+3x+2 = 0
// a = 7, b = 3, c= 2

// Case C
// 5x²+7x+2 = 0
// a = 5, b = 7, c = 2

}
}``````

#### Output

`````` Given a : 4.0
Given b : 8.0
Given c : 4.0
X = -1.0
X = -1.0

Given a : 7.0
Given b : 3.0
Given c : 2.0
X = -0.21428571428571427 + 0.48968961431436026i
X = -0.21428571428571427 - 0.48968961431436026i

Given a : 5.0
Given b : 7.0
Given c : 2.0
X = -0.4
X = -1.0``````
``````// Include header file
#include <iostream>
#include <math.h>
using namespace std;
/*
C++ program
Find square root of quadratic equation
*/
{
public: void squareRoot(double a, double b, double c)
{
//            _______
//      −b ± √b2−4ac
//  x = ————————————
//          2a
//
// Calculate polynomial with an order of 2
// ax²+bx+c = 0
double discriminant = (b *b) - (4 *a *c);
double r1 = 0.0;
double r2 = 0.0;
// Display parameter
cout << "\n Given a : " << a;
cout << "\n Given b : " << b;
cout << "\n Given c : " << c;
if (discriminant == 0)
{
// When (b²−4ac) == 0
r1 = (-b) / (2 *a);
r2 = r1;
// Print two equal and real roots
cout << "\n X = " << r1;
cout << "\n X = " << r2;
}
else
{
if (discriminant > 0)
{
// When (b²−4ac) > 0
r1 = ((-b) + sqrt(discriminant)) / (2 *a);
r2 = ((-b) - sqrt(discriminant)) / (2 *a);
// Print two distinct and real roots
cout << "\n X = " << r1;
cout << "\n X = " << r2;
}
else
{
// (b²−4ac) < 0
double imaginary = sqrt(-discriminant) / (2 *a);
r1 = (-b) / (2 *a);
r2 = r1;
// Print two distinct complex roots
cout << "\n X = " << r1 << " + " << imaginary << "i ";
cout << "\n X = " << r2 << " - " << imaginary << "i ";
}
}
cout << "\n";
}
};
int main()
{
// Case A
// 4x²+8x+4 = 0
// a = 4, b = 8, c = 4
// Case B
// 7x²+3x+2 = 0
// a = 7, b = 3, c= 2
// Case C
// 5x²+7x+2 = 0
// a = 5, b = 7, c = 2
return 0;
}``````

#### Output

`````` Given a : 4
Given b : 8
Given c : 4
X = -1
X = -1

Given a : 7
Given b : 3
Given c : 2
X = -0.214286 + 0.48969i
X = -0.214286 - 0.48969i

Given a : 5
Given b : 7
Given c : 2
X = -0.4
X = -1``````
``````// Include namespace system
using System;
using System.Collections.Generic;
/*
C# program
Find square root of quadratic equation
*/
{
public void squareRoot(double a, double b, double c)
{
//            _______
//      −b ± √b2−4ac
//  x = ————————————
//          2a
//
// Calculate polynomial with an order of 2
// ax²+bx+c = 0
double discriminant = (b * b) - (4 * a * c);
double r1 = 0.0;
double r2 = 0.0;
// Display parameter
Console.Write("\n Given a : " + a);
Console.Write("\n Given b : " + b);
Console.Write("\n Given c : " + c);
if (discriminant == 0)
{
// When (b²−4ac) == 0
r1 = (-b) / (2 * a);
r2 = r1;
// Print two equal and real roots
Console.Write("\n X = " + r1);
Console.Write("\n X = " + r2);
}
else
{
if (discriminant > 0)
{
// When (b²−4ac) > 0
r1 = ((-b) + Math.Sqrt(discriminant)) / (2 * a);
r2 = ((-b) - Math.Sqrt(discriminant)) / (2 * a);
// Print two distinct and real roots
Console.Write("\n X = " + r1);
Console.Write("\n X = " + r2);
}
else
{
// (b²−4ac) < 0
double imaginary = Math.Sqrt(-discriminant) / (2 * a);
r1 = (-b) / (2 * a);
r2 = r1;
// Print two distinct complex roots
Console.Write("\n X = " + r1 + " + " + imaginary + "i ");
Console.Write("\n X = " + r2 + " - " + imaginary + "i ");
}
}
Console.Write("\n");
}
public static void Main(String[] args)
{
// Case A
// 4x²+8x+4 = 0
// a = 4, b = 8, c = 4
// Case B
// 7x²+3x+2 = 0
// a = 7, b = 3, c= 2
// Case C
// 5x²+7x+2 = 0
// a = 5, b = 7, c = 2
}
}``````

#### Output

`````` Given a : 4
Given b : 8
Given c : 4
X = -1
X = -1

Given a : 7
Given b : 3
Given c : 2
X = -0.214285714285714 + 0.48968961431436i
X = -0.214285714285714 - 0.48968961431436i

Given a : 5
Given b : 7
Given c : 2
X = -0.4
X = -1``````
``````<?php
/*
Php program
Find square root of quadratic equation
*/
{
public	function squareRoot(\$a, \$b, \$c)
{
//            _______
//      −b ± √b2−4ac
//  x = ————————————
//          2a
//
// Calculate polynomial with an order of 2
// ax²+bx+c = 0
\$discriminant = (\$b * \$b) - (4 * \$a * \$c);
\$r1 = 0.0;
\$r2 = 0.0;
// Display parameter
echo "\n Given a : ". \$a;
echo "\n Given b : ". \$b;
echo "\n Given c : ". \$c;
if (\$discriminant == 0)
{
// When (b²−4ac) == 0
\$r1 = ((-\$b) / (2 * \$a));
\$r2 = \$r1;
// Print two equal and real roots
echo "\n X = ". \$r1;
echo "\n X = ". \$r2;
}
else
{
if (\$discriminant > 0)
{
// When (b²−4ac) > 0
\$r1 = (((-\$b) + sqrt(\$discriminant)) / (2 * \$a));
\$r2 = (((-\$b) - sqrt(\$discriminant)) / (2 * \$a));
// Print two distinct and real roots
echo "\n X = ". \$r1;
echo "\n X = ". \$r2;
}
else
{
// (b²−4ac) < 0
\$imaginary = (sqrt(-\$discriminant) / (2 * \$a));
\$r1 = ((-\$b) / (2 * \$a));
\$r2 = \$r1;
// Print two distinct complex roots
echo "\n X = ". \$r1 ." + ". \$imaginary ."i ";
echo "\n X = ". \$r2 ." - ". \$imaginary ."i ";
}
}
echo "\n";
}
}

function main()
{
// Case A
// 4x²+8x+4 = 0
// a = 4, b = 8, c = 4
// Case B
// 7x²+3x+2 = 0
// a = 7, b = 3, c= 2
// Case C
// 5x²+7x+2 = 0
// a = 5, b = 7, c = 2
}
main();``````

#### Output

`````` Given a : 4
Given b : 8
Given c : 4
X = -1
X = -1

Given a : 7
Given b : 3
Given c : 2
X = -0.21428571428571 + 0.48968961431436i
X = -0.21428571428571 - 0.48968961431436i

Given a : 5
Given b : 7
Given c : 2
X = -0.4
X = -1``````
``````/*
Node Js program
Find square root of quadratic equation
*/
{
squareRoot(a, b, c)
{
//            _______
//      −b ± √b2−4ac
//  x = ————————————
//          2a
//
// Calculate polynomial with an order of 2
// ax²+bx+c = 0
var discriminant = (b * b) - (4 * a * c);
var r1 = 0.0;
var r2 = 0.0;
// Display parameter
process.stdout.write("\n Given a : " + a);
process.stdout.write("\n Given b : " + b);
process.stdout.write("\n Given c : " + c);
if (discriminant == 0)
{
// When (b²−4ac) == 0
r1 = ((-b) / (2 * a));
r2 = r1;
// Print two equal and real roots
process.stdout.write("\n X = " + r1);
process.stdout.write("\n X = " + r2);
}
else
{
if (discriminant > 0)
{
// When (b²−4ac) > 0
r1 = ((-b) + Math.sqrt(discriminant)) / (2 * a);
r2 = ((-b) - Math.sqrt(discriminant)) / (2 * a);
// Print two distinct and real roots
process.stdout.write("\n X = " + r1);
process.stdout.write("\n X = " + r2);
}
else
{
// (b²−4ac) < 0
var imaginary = (Math.sqrt(-discriminant) / (2 * a));
r1 = ((-b) / (2 * a));
r2 = r1;
// Print two distinct complex roots
process.stdout.write("\n X = " + r1 + " + " + imaginary + "i ");
process.stdout.write("\n X = " + r2 + " - " + imaginary + "i ");
}
}
process.stdout.write("\n");
}
}

function main()
{
// Case A
// 4x²+8x+4 = 0
// a = 4, b = 8, c = 4
// Case B
// 7x²+3x+2 = 0
// a = 7, b = 3, c= 2
// Case C
// 5x²+7x+2 = 0
// a = 5, b = 7, c = 2
}
main();``````

#### Output

`````` Given a : 4
Given b : 8
Given c : 4
X = -1
X = -1

Given a : 7
Given b : 3
Given c : 2
X = -0.21428571428571427 + 0.48968961431436026i
X = -0.21428571428571427 - 0.48968961431436026i

Given a : 5
Given b : 7
Given c : 2
X = -0.4
X = -1``````
``````#   Ruby program
#   Find square root of quadratic equation

def squareRoot(a, b, c)
#             _______
#       −b ± √b2−4ac
#   x = ————————————
#           2a
#
#  Calculate polynomial with an order of 2
#  ax²+bx+c = 0
discriminant = (b * b) - (4 * a * c)
r1 = 0.0
r2 = 0.0
#  Display parameter
print("\n Given a : ", a)
print("\n Given b : ", b)
print("\n Given c : ", c)
if (discriminant == 0)
#  When (b²−4ac) == 0
r1 = (-b) / (2 * a)
r2 = r1
#  Print two equal and real roots
print("\n X = ", r1)
print("\n X = ", r2)
else
if (discriminant > 0)
#  When (b²−4ac) > 0
r1 = ((-b) + Math.sqrt(discriminant)) / (2 * a)
r2 = ((-b) - Math.sqrt(discriminant)) / (2 * a)
#  Print two distinct and real roots
print("\n X = ", r1)
print("\n X = ", r2)
else
#  (b²−4ac) < 0
imaginary = Math.sqrt(-discriminant) / (2 * a)
r1 = (-b).to_f / (2 * a)
r2 = r1
#  Print two distinct complex roots
print("\n X = ", r1 ," + ", imaginary ,"i ")
print("\n X = ", r2 ," - ", imaginary ,"i ")
end

end

print("\n")
end

end

def main()
#  Case A
#  4x²+8x+4 = 0
#  a = 4, b = 8, c = 4
#  Case B
#  7x²+3x+2 = 0
#  a = 7, b = 3, c= 2
#  Case C
#  5x²+7x+2 = 0
#  a = 5, b = 7, c = 2
end

main()``````

#### Output

`````` Given a : 4
Given b : 8
Given c : 4
X = -1
X = -1

Given a : 7
Given b : 3
Given c : 2
X = -0.21428571428571427 + 0.48968961431436026i
X = -0.21428571428571427 - 0.48968961431436026i

Given a : 5
Given b : 7
Given c : 2
X = -0.4
X = -1.0
``````
``````/*
Scala program
Find square root of quadratic equation
*/
{
def squareRoot(a: Double, b: Double, c: Double): Unit = {
//            _______
//      −b ± √b2−4ac
//  x = ————————————
//          2a
//
// Calculate polynomial with an order of 2
// ax²+bx+c = 0
var discriminant: Double = (b * b) - (4 * a * c);
var r1: Double = 0.0;
var r2: Double = 0.0;
// Display parameter
print("\n Given a : " + a);
print("\n Given b : " + b);
print("\n Given c : " + c);
if (discriminant == 0)
{
// When (b²−4ac) == 0
r1 = ((-b) / (2 * a));
r2 = r1;
// Print two equal and real roots
print("\n X = " + r1);
print("\n X = " + r2);
}
else
{
if (discriminant > 0)
{
// When (b²−4ac) > 0
r1 = (((-b) + Math.sqrt(discriminant)) / (2 * a));
r2 = (((-b) - Math.sqrt(discriminant)) / (2 * a));
// Print two distinct and real roots
print("\n X = " + r1);
print("\n X = " + r2);
}
else
{
// (b²−4ac) < 0
var imaginary: Double = (Math.sqrt(-discriminant) / (2 * a));
r1 = ((-b) / (2 * a));
r2 = r1;
// Print two distinct complex roots
print("\n X = " + r1 + " + " + imaginary + "i ");
print("\n X = " + r2 + " - " + imaginary + "i ");
}
}
print("\n");
}
}
object Main
{
def main(args: Array[String]): Unit = {
// Case A
// 4x²+8x+4 = 0
// a = 4, b = 8, c = 4
// Case B
// 7x²+3x+2 = 0
// a = 7, b = 3, c= 2
// Case C
// 5x²+7x+2 = 0
// a = 5, b = 7, c = 2
}
}``````

#### Output

`````` Given a : 4.0
Given b : 8.0
Given c : 4.0
X = -1.0
X = -1.0

Given a : 7.0
Given b : 3.0
Given c : 2.0
X = -0.21428571428571427 + 0.48968961431436026i
X = -0.21428571428571427 - 0.48968961431436026i

Given a : 5.0
Given b : 7.0
Given c : 2.0
X = -0.4
X = -1.0``````
``````import Foundation
/*
Swift 4 program
Find square root of quadratic equation
*/
{
func squareRoot(_ a: Double, _ b: Double, _ c: Double)
{
//            _______
//      −b ± √b2−4ac
//  x = ————————————
//          2a
//
// Calculate polynomial with an order of 2
// ax²+bx+c = 0
let discriminant: Double = (b * b) - (4 * a * c);
var r1: Double = 0.0;
var r2: Double = 0.0;
// Display parameter
print("\n Given a : ", a, terminator: "");
print("\n Given b : ", b, terminator: "");
print("\n Given c : ", c, terminator: "");
if (discriminant == 0)
{
// When (b²−4ac) == 0
r1 = (-b) / (2 * a);
r2 = r1;
// Print two equal and real roots
print("\n X = ", r1, terminator: "");
print("\n X = ", r2, terminator: "");
}
else
{
if (discriminant > 0)
{
// When (b²−4ac) > 0
r1 = ((-b) + sqrt(discriminant)) / (2 * a);
r2 = ((-b) - sqrt(discriminant)) / (2 * a);
// Print two distinct and real roots
print("\n X = ", r1, terminator: "");
print("\n X = ", r2, terminator: "");
}
else
{
// (b²−4ac) < 0
let imaginary: Double = sqrt(-discriminant) / (2 * a);
r1 = (-b) / (2 * a);
r2 = r1;
// Print two distinct complex roots
print("\n X = ", r1 ," + ", imaginary ,"i ", terminator: "");
print("\n X = ", r2 ," - ", imaginary ,"i ", terminator: "");
}
}
print(terminator: "\n");
}
}
func main()
{
// Case A
// 4x²+8x+4 = 0
// a = 4, b = 8, c = 4
// Case B
// 7x²+3x+2 = 0
// a = 7, b = 3, c= 2
// Case C
// 5x²+7x+2 = 0
// a = 5, b = 7, c = 2
}
main();``````

#### Output

`````` Given a :  4.0
Given b :  8.0
Given c :  4.0
X =  -1.0
X =  -1.0

Given a :  7.0
Given b :  3.0
Given c :  2.0
X =  -0.214285714285714  +  0.48968961431436 i
X =  -0.214285714285714  -  0.48968961431436 i

Given a :  5.0
Given b :  7.0
Given c :  2.0
X =  -0.4
X =  -1.0``````
``````/*
Kotlin program
Find square root of quadratic equation
*/
{
fun squareRoot(a: Double, b: Double, c: Double): Unit
{
//            _______
//      −b ± √b2−4ac
//  x = ————————————
//          2a
//
// Calculate polynomial with an order of 2
// ax²+bx+c = 0
var discriminant: Double = (b * b) - (4 * a * c);
var r1: Double ;
var r2: Double ;
// Display parameter
print("\n Given a : " + a);
print("\n Given b : " + b);
print("\n Given c : " + c);
if (discriminant == 0.0)
{
// When (b²−4ac) == 0
r1 = (-b) / (2 * a);
r2 = r1;
// Print two equal and real roots
print("\n X = " + r1);
print("\n X = " + r2);
}
else
{
if (discriminant > 0)
{
// When (b²−4ac) > 0
r1 = ((-b) + Math.sqrt(discriminant)) / (2 * a);
r2 = ((-b) - Math.sqrt(discriminant)) / (2 * a);
// Print two distinct and real roots
print("\n X = " + r1);
print("\n X = " + r2);
}
else
{
// (b²−4ac) < 0
var imaginary: Double = Math.sqrt(-discriminant) / (2 * a);
r1 = (-b) / (2 * a);
r2 = r1;
// Print two distinct complex roots
print("\n X = " + r1 + " + " + imaginary + "i ");
print("\n X = " + r2 + " - " + imaginary + "i ");
}
}
print("\n");
}
}
fun main(args: Array < String > ): Unit
{
// Case A
// 4x²+8x+4 = 0
// a = 4, b = 8, c = 4
// Case B
// 7x²+3x+2 = 0
// a = 7, b = 3, c= 2
// Case C
// 5x²+7x+2 = 0
// a = 5, b = 7, c = 2
}``````

#### Output

`````` Given a : 4.0
Given b : 8.0
Given c : 4.0
X = -1.0
X = -1.0

Given a : 7.0
Given b : 3.0
Given c : 2.0
X = -0.21428571428571427 + 0.48968961431436026i
X = -0.21428571428571427 - 0.48968961431436026i

Given a : 5.0
Given b : 7.0
Given c : 2.0
X = -0.4
X = -1.0``````
``````import math

#   Python 3 program
#   Find square root of quadratic equation

def squareRoot(self, a, b, c) :
#             _______
#       −b ± √b2−4ac
#   x = ————————————
#           2a
#
#  Calculate polynomial with an order of 2
#  ax²+bx+c = 0
discriminant = (b * b) - (4 * a * c)
r1 = 0.0
r2 = 0.0
#  Display parameter
print("\n Given a : ", a, end = "")
print("\n Given b : ", b, end = "")
print("\n Given c : ", c, end = "")
if (discriminant == 0) :
#  When (b²−4ac) == 0
r1 = int((-b) / (2 * a))
r2 = r1
#  Print two equal and real roots
print("\n X = ", r1, end = "")
print("\n X = ", r2, end = "")
else :
if (discriminant > 0) :
#  When (b²−4ac) > 0
r1 = (((-b) + math.sqrt(discriminant)) / (2 * a))
r2 = (((-b) - math.sqrt(discriminant)) / (2 * a))
#  Print two distinct and real roots
print("\n X = ", r1, end = "")
print("\n X = ", r2, end = "")
else :
#  (b²−4ac) < 0
imaginary = (math.sqrt(-discriminant) / (2 * a))
r1 = ((-b) / (2 * a))
r2 = r1
#  Print two distinct complex roots
print("\n X = ", r1 ," + ", imaginary ,"i ", end = "")
print("\n X = ", r2 ," - ", imaginary ,"i ", end = "")

print(end = "\n")

def main() :
#  Case A
#  4x²+8x+4 = 0
#  a = 4, b = 8, c = 4
#  Case B
#  7x²+3x+2 = 0
#  a = 7, b = 3, c= 2
#  Case C
#  5x²+7x+2 = 0
#  a = 5, b = 7, c = 2

if __name__ == "__main__": main()``````

#### Output

`````` Given a :  4
Given b :  8
Given c :  4
X =  -1
X =  -1

Given a :  7
Given b :  3
Given c :  2
X =  -0.21428571428571427  +  0.48968961431436026 i
X =  -0.21428571428571427  -  0.48968961431436026 i

Given a :  5
Given b :  7
Given c :  2
X =  -0.4
X =  -1.0``````

## Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.