Find the prime numbers between given range using segmented sieve
Here given code implementation process.
import java.util.ArrayList;
// Java program for
// Find the prime numbers between given range using segmented sieve
public class Sieve
{
public void eratosthenesSieve(ArrayList < Integer > prime, int n)
{
boolean[] mark = new boolean[n + 1];
// Set all element as prime
for (int i = 0; i <= n; ++i)
{
mark[i] = true;
}
mark[0] = false;
mark[1] = false;
for (int i = 2; i <= n; ++i)
{
if (mark[i] == true)
{
// Collect prime element
prime.add(i);
for (int j = i * i; j <= n; j += i)
{
mark[j] = false;
}
}
}
}
public void segmentedSieve(int s, int e)
{
if (s < 0 || e < 2)
{
return;
}
System.out.println("\n Prime number in range of (" + s + "," + e + ")");
ArrayList < Integer > prime = new ArrayList < Integer > ();
// Get the initial prime number by given e
int limit = (int)(Math.floor(Math.sqrt(e)) + 1);
// Starting value
int low = s;
int high = (limit) + s;
int value = 0;
// Container which is used to detect (√e) prime element
boolean[] mark = new boolean[limit + 1];
// Find first (√e) prime number
eratosthenesSieve(prime, limit);
for (int i = 0; i < prime.size(); ++i)
{
if (prime.get(i) >= s)
{
System.out.print(" " + prime.get(i));
}
}
// This loop displays the remaining prime number between (√e .. e)
while (low < e)
{
// Set next (√e) prime number is valid
for (int i = 0; i <= limit; ++i)
{
mark[i] = true;
}
if (high >= e)
{
// When next prime pair are greater than e
// Set high value to e
high = e;
}
for (int i = 0; i < prime.size(); i++)
{
value = (int)(Math.floor(low / prime.get(i)) * prime.get(i));
if (value < low)
{
// Add current prime value
value += prime.get(i);
}
for (int j = value; j < high; j += prime.get(i))
{
// Set mutiple is non prime
mark[j - low] = false;
}
}
// Display prime elements
for (int i = low; i < high; i++)
{
if (mark[i - low] == true)
{
System.out.print(" " + i);
}
}
// Update of all multiple of value is non prime
high = high + limit;
low = low + limit;
}
}
public static void main(String[] args)
{
Sieve task = new Sieve();
// Test
task.segmentedSieve(100, 200);
task.segmentedSieve(999, 1200);
}
}
Output
Prime number in range of (100,200)
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
Prime number in range of (999,1200)
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
// Include header file
#include <iostream>
#include <vector>
#include <math.h>
using namespace std;
// C++ program for
// Find the prime numbers between given range using segmented sieve
class Sieve
{
public: void eratosthenesSieve(vector < int > &prime, int n)
{
bool mark[n + 1];
// Set all element as prime
for (int i = 0; i <= n; ++i)
{
mark[i] = true;
}
mark[0] = false;
mark[1] = false;
for (int i = 2; i <= n; ++i)
{
if (mark[i] == true)
{
// Collect prime element
prime.push_back(i);
for (int j = i *i; j <= n; j += i)
{
mark[j] = false;
}
}
}
}
void segmentedSieve(int s, int e)
{
if (s < 0 || e < 2)
{
return;
}
cout << "\n Prime number in range of ("
<< s << "," << e << ")" << endl;
vector < int > prime;
// Get the initial prime number by given e
int limit = (int)(floor(sqrt(e)) + 1);
// Starting value
int low = s;
int high = limit + s;
int value = 0;
// Container which is used to detect (√e) prime element
bool mark[limit + 1];
// Find first (√e) prime number
this->eratosthenesSieve(prime, limit);
for (int i = 0; i < prime.size(); ++i)
{
if (prime.at(i) >= s)
{
cout << " " << prime.at(i);
}
}
// This loop displays the remaining prime number between (√e .. e)
while (low < e)
{
// Set next (√e) prime number is valid
for (int i = 0; i <= limit; ++i)
{
mark[i] = true;
}
if (high >= e)
{
// When next prime pair are greater than e
// Set high value to e
high = e;
}
for (int i = 0; i < prime.size(); i++)
{
value = (int)(floor(low / prime.at(i)) * prime.at(i));
if (value < low)
{
// Add current prime value
value += prime.at(i);
}
for (int j = value; j < high; j += prime.at(i))
{
// Set mutiple is non prime
mark[j - low] = false;
}
}
// Display prime elements
for (int i = low; i < high; i++)
{
if (mark[i - low] == true)
{
cout << " " << i;
}
}
// Update of all multiple of value is non prime
high = high + limit;
low = low + limit;
}
}
};
int main()
{
Sieve *task = new Sieve();
// Test
task->segmentedSieve(100, 200);
task->segmentedSieve(999, 1200);
return 0;
}
Output
Prime number in range of (100,200)
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
Prime number in range of (999,1200)
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
// Include namespace system
using System;
using System.Collections.Generic;
// Csharp program for
// Find the prime numbers between given range using segmented sieve
public class Sieve
{
public void eratosthenesSieve(List < int > prime, int n)
{
Boolean[] mark = new Boolean[n + 1];
// Set all element as prime
for (int i = 0; i <= n; ++i)
{
mark[i] = true;
}
mark[0] = false;
mark[1] = false;
for (int i = 2; i <= n; ++i)
{
if (mark[i] == true)
{
// Collect prime element
prime.Add(i);
for (int j = i * i; j <= n; j += i)
{
mark[j] = false;
}
}
}
}
public void segmentedSieve(int s, int e)
{
if (s < 0 || e < 2)
{
return;
}
Console.WriteLine("\n Prime number in range of (" + s + "," + e + ")");
List < int > prime = new List < int > ();
// Get the initial prime number by given e
int limit = (int)(Math.Floor(Math.Sqrt(e)) + 1);
// Starting value
int low = s;
int high = (limit) + s;
int value = 0;
// Container which is used to detect (√e) prime element
Boolean[] mark = new Boolean[limit + 1];
// Find first (√e) prime number
this.eratosthenesSieve(prime, limit);
for (int i = 0; i < prime.Count; ++i)
{
if (prime[i] >= s)
{
Console.Write(" " + prime[i]);
}
}
// This loop displays the remaining prime number between (√e .. e)
while (low < e)
{
// Set next (√e) prime number is valid
for (int i = 0; i <= limit; ++i)
{
mark[i] = true;
}
if (high >= e)
{
// When next prime pair are greater than e
// Set high value to e
high = e;
}
for (int i = 0; i < prime.Count; i++)
{
value = (int)(Math.Floor((double)(low / prime[i])) * prime[i]);
if (value < low)
{
// Add current prime value
value += prime[i];
}
for (int j = value; j < high; j += prime[i])
{
// Set mutiple is non prime
mark[j - low] = false;
}
}
// Display prime elements
for (int i = low; i < high; i++)
{
if (mark[i - low] == true)
{
Console.Write(" " + i);
}
}
// Update of all multiple of value is non prime
high = high + limit;
low = low + limit;
}
}
public static void Main(String[] args)
{
Sieve task = new Sieve();
// Test
task.segmentedSieve(100, 200);
task.segmentedSieve(999, 1200);
}
}
Output
Prime number in range of (100,200)
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
Prime number in range of (999,1200)
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
package main
import "math"
import "fmt"
// Go program for
// Find the prime numbers between given range using segmented sieve
type Sieve struct {}
func getSieve() * Sieve {
var me *Sieve = &Sieve {}
return me
}
func(this Sieve) eratosthenesSieve(prime *[]int, n int) {
var mark = make([] bool, n + 1)
// Set all element as prime
for i := 0 ; i <= n ; i++ {
mark[i] = true
}
mark[0] = false
mark[1] = false
for i := 2 ; i <= n ; i++ {
if mark[i] == true {
// Collect prime element
*prime = append(*prime, i)
for j := i * i ; j <= n ; j += i {
mark[j] = false
}
}
}
}
func(this Sieve) segmentedSieve(s, e int) {
if s < 0 || e < 2 {
return
}
fmt.Println("\n Prime number in range of (", s, ",", e, ")")
var prime = make([]int ,0)
// Get the initial prime number by given e
var limit int = (int)(math.Floor(math.Sqrt(float64(e))) + 1)
// Starting value
var low int = s
var high int = (limit) + s
var value int = 0
// Container which is used to detect (√e) prime element
var mark = make([] bool, limit + 1)
// Find first (√e) prime number
this.eratosthenesSieve(&prime, limit)
for i := 0 ; i < len(prime) ; i++ {
if prime[i] >= s {
fmt.Print(" ", prime[i])
}
}
// This loop displays the remaining prime number between (√e .. e)
for (low < e) {
// Set next (√e) prime number is valid
for i := 0 ; i <= limit ; i++ {
mark[i] = true
}
if high >= e {
// When next prime pair are greater than e
// Set high value to e
high = e
}
for i := 0 ; i < len(prime) ; i++ {
value = (int)(math.Floor(float64(low / prime[i])) * float64(prime[i]))
if value < low {
// Add current prime value
value += prime[i]
}
for j := value ; j < high ; j += prime[i] {
// Set mutiple is non prime
mark[j - low] = false
}
}
// Display prime elements
for i := low ; i < high ; i++ {
if mark[i - low] == true {
fmt.Print(" ", i)
}
}
// Update of all multiple of value is non prime
high = high + limit
low = low + limit
}
}
func main() {
var task * Sieve = getSieve()
// Test
task.segmentedSieve(100, 200)
task.segmentedSieve(999, 1200)
}
Output
Prime number in range of (100,200)
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
Prime number in range of (999,1200)
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
<?php
// Php program for
// Find the prime numbers between given range using segmented sieve
class Sieve
{
public function eratosthenesSieve(&$prime, $n)
{
// Set all element as prime
$mark = array_fill(0, $n + 1, true);
$mark[0] = false;
$mark[1] = false;
for ($i = 2; $i <= $n; ++$i)
{
if ($mark[$i] == true)
{
// Collect prime element
$prime[] = $i;
for ($j = $i * $i; $j <= $n; $j += $i)
{
$mark[$j] = false;
}
}
}
}
public function segmentedSieve($s, $e)
{
if ($s < 0 || $e < 2)
{
return;
}
echo("\n Prime number in range of (".$s.
",".$e.
")".
"\n");
$prime = array();
// Get the initial prime number by given e
$limit = (int)(floor(sqrt($e)) + 1);
// Starting value
$low = $s;
$high = ($limit) + $s;
$value = 0;
// Container which is used to detect (√e) prime element
$mark = array_fill(0, $limit + 1, false);
// Find first (√e) prime number
$this->eratosthenesSieve($prime, $limit);
for ($i = 0; $i < count($prime); ++$i)
{
if ($prime[$i] >= $s)
{
echo(" ".$prime[$i]);
}
}
// This loop displays the remaining prime number between (√e .. e)
while ($low < $e)
{
// Set next (√e) prime number is valid
for ($i = 0; $i <= $limit; ++$i)
{
$mark[$i] = true;
}
if ($high >= $e)
{
// When next prime pair are greater than e
// Set high value to e
$high = $e;
}
for ($i = 0; $i < count($prime); $i++)
{
$value = (int)(floor((int)($low / $prime[$i])) * $prime[$i]);
if ($value < $low)
{
// Add current prime value
$value += $prime[$i];
}
for ($j = $value; $j < $high; $j += $prime[$i])
{
// Set mutiple is non prime
$mark[$j - $low] = false;
}
}
// Display prime elements
for ($i = $low; $i < $high; $i++)
{
if ($mark[$i - $low] == true)
{
echo(" ".$i);
}
}
// Update of all multiple of value is non prime
$high = $high + $limit;
$low = $low + $limit;
}
}
}
function main()
{
$task = new Sieve();
// Test
$task->segmentedSieve(100, 200);
$task->segmentedSieve(999, 1200);
}
main();
Output
Prime number in range of (100,200)
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
Prime number in range of (999,1200)
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
// Node JS program for
// Find the prime numbers between given range using segmented sieve
class Sieve
{
eratosthenesSieve(prime, n)
{
// Set all element as prime
var mark = Array(n + 1).fill(true);
mark[0] = false;
mark[1] = false;
for (var i = 2; i <= n; ++i)
{
if (mark[i] == true)
{
// Collect prime element
prime.push(i);
for (var j = i * i; j <= n; j += i)
{
mark[j] = false;
}
}
}
}
segmentedSieve(s, e)
{
if (s < 0 || e < 2)
{
return;
}
console.log("\n Prime number in range of (" +
s + "," + e + ")");
var prime = [];
// Get the initial prime number by given e
var limit = parseInt(Math.floor(Math.sqrt(e)) + 1);
// Starting value
var low = s;
var high = (limit) + s;
var value = 0;
// Container which is used to detect (√e) prime element
var mark = Array(limit + 1).fill(false);
// Find first (√e) prime number
this.eratosthenesSieve(prime, limit);
for (var i = 0; i < prime.length; ++i)
{
if (prime[i] >= s)
{
process.stdout.write(" " + prime[i]);
}
}
// This loop displays the remaining prime number between (√e .. e)
while (low < e)
{
// Set next (√e) prime number is valid
for (var i = 0; i <= limit; ++i)
{
mark[i] = true;
}
if (high >= e)
{
// When next prime pair are greater than e
// Set high value to e
high = e;
}
for (var i = 0; i < prime.length; i++)
{
value = parseInt(
Math.floor(parseInt(low / prime[i])) * prime[i]);
if (value < low)
{
// Add current prime value
value += prime[i];
}
for (var j = value; j < high; j += prime[i])
{
// Set mutiple is non prime
mark[j - low] = false;
}
}
// Display prime elements
for (var i = low; i < high; i++)
{
if (mark[i - low] == true)
{
process.stdout.write(" " + i);
}
}
// Update of all multiple of value is non prime
high = high + limit;
low = low + limit;
}
}
}
function main()
{
var task = new Sieve();
// Test
task.segmentedSieve(100, 200);
task.segmentedSieve(999, 1200);
}
main();
Output
Prime number in range of (100,200)
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
Prime number in range of (999,1200)
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
import math
# Python 3 program for
# Find the prime numbers between given range using segmented sieve
class Sieve :
def eratosthenesSieve(self, prime, n) :
# Set all element as prime
mark = [True] * (n + 1)
mark[0] = False
mark[1] = False
i = 2
while (i <= n) :
if (mark[i] == True) :
# Collect prime element
prime.append(i)
j = i * i
while (j <= n) :
mark[j] = False
j += i
i += 1
def segmentedSieve(self, s, e) :
if (s < 0 or e < 2) :
return
print("\n Prime number in range of (", s ,",", e ,")")
prime = []
# Get the initial prime number by given e
limit = (int)(math.floor(math.sqrt(e)) + 1)
# Starting value
low = s
high = (limit) + s
value = 0
# Container which is used to detect (√e) prime element
mark = [False] * (limit + 1)
# Find first (√e) prime number
self.eratosthenesSieve(prime, limit)
i = 0
while (i < len(prime)) :
if (prime[i] >= s) :
print(" ", prime[i], end = "")
i += 1
# This loop displays the remaining prime number between (√e .. e)
while (low < e) :
i = 0
# Set next (√e) prime number is valid
while (i <= limit) :
mark[i] = True
i += 1
if (high >= e) :
# When next prime pair are greater than e
# Set high value to e
high = e
i = 0
while (i < len(prime)) :
value = (int)(math.floor(int(low / prime[i])) * prime[i])
if (value < low) :
# Add current prime value
value += prime[i]
j = value
while (j < high) :
# Set mutiple is non prime
mark[j - low] = False
j += prime[i]
i += 1
i = low
# Display prime elements
while (i < high) :
if (mark[i - low] == True) :
print(" ", i, end = "")
i += 1
# Update of all multiple of value is non prime
high = high + limit
low = low + limit
def main() :
task = Sieve()
# Test
task.segmentedSieve(100, 200)
task.segmentedSieve(999, 1200)
if __name__ == "__main__": main()
Output
Prime number in range of ( 100 , 200 )
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
Prime number in range of ( 999 , 1200 )
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
# Ruby program for
# Find the prime numbers between given range using segmented sieve
class Sieve
def eratosthenesSieve(prime, n)
# Set all element as prime
mark = Array.new(n + 1) {true}
mark[0] = false
mark[1] = false
i = 2
while (i <= n)
if (mark[i] == true)
# Collect prime element
prime.push(i)
j = i * i
while (j <= n)
mark[j] = false
j += i
end
end
i += 1
end
end
def segmentedSieve(s, e)
if (s < 0 || e < 2)
return
end
print("\n Prime number in range of (", s ,",", e ,")", "\n")
prime = []
# Get the initial prime number by given e
limit = (Math.sqrt(e).floor() + 1)
# Starting value
low = s
high = (limit) + s
value = 0
# Container which is used to detect (√e) prime element
mark = Array.new(limit + 1) {false}
# Find first (√e) prime number
self.eratosthenesSieve(prime, limit)
i = 0
while (i < prime.length)
if (prime[i] >= s)
print(" ", prime[i])
end
i += 1
end
# This loop displays the remaining prime number between (√e .. e)
while (low < e)
i = 0
# Set next (√e) prime number is valid
while (i <= limit)
mark[i] = true
i += 1
end
if (high >= e)
# When next prime pair are greater than e
# Set high value to e
high = e
end
i = 0
while (i < prime.length)
value = (low / prime[i].floor() * prime[i])
if (value < low)
# Add current prime value
value += prime[i]
end
j = value
while (j < high)
# Set mutiple is non prime
mark[j - low] = false
j += prime[i]
end
i += 1
end
i = low
# Display prime elements
while (i < high)
if (mark[i - low] == true)
print(" ", i)
end
i += 1
end
# Update of all multiple of value is non prime
high = high + limit
low = low + limit
end
end
end
def main()
task = Sieve.new()
# Test
task.segmentedSieve(100, 200)
task.segmentedSieve(999, 1200)
end
main()
Output
Prime number in range of (100,200)
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
Prime number in range of (999,1200)
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
import scala.collection.mutable._;
// Scala program for
// Find the prime numbers between given range using segmented sieve
class Sieve()
{
def eratosthenesSieve(prime: ArrayBuffer[Int], n: Int): Unit = {
// Set all element as prime
var mark: Array[Boolean] = Array.fill[Boolean](n + 1)(true);
mark(0) = false;
mark(1) = false;
var i: Int = 2;
while (i <= n)
{
if (mark(i) == true)
{
// Collect prime element
prime += i;
var j: Int = i * i;
while (j <= n)
{
mark(j) = false;
j += i;
}
}
i += 1;
}
}
def segmentedSieve(s: Int, e: Int): Unit = {
if (s < 0 || e < 2)
{
return;
}
println("\n Prime number in range of (" + s + "," + e + ")");
var prime: ArrayBuffer[Int] = new ArrayBuffer[Int]();
// Get the initial prime number by given e
var limit: Int = (Math.floor(scala.math.sqrt(e)) + 1).toInt;
// Starting value
var low: Int = s;
var high: Int = (limit) + s;
var value: Int = 0;
// Container which is used to detect (√e) prime element
var mark: Array[Boolean] = Array.fill[Boolean](limit + 1)(false);
// Find first (√e) prime number
eratosthenesSieve(prime, limit);
var i: Int = 0;
while (i < prime.size)
{
if (prime(i) >= s)
{
print(" " + prime(i));
}
i += 1;
}
// This loop displays the remaining prime number between (√e .. e)
while (low < e)
{
i = 0;
// Set next (√e) prime number is valid
while (i <= limit)
{
mark(i) = true;
i += 1;
}
if (high >= e)
{
// When next prime pair are greater than e
// Set high value to e
high = e;
}
i = 0;
while (i < prime.size)
{
value = (Math.floor(low / prime(i)) * prime(i)).toInt;
if (value < low)
{
// Add current prime value
value += prime(i);
}
var j: Int = value;
while (j < high)
{
// Set mutiple is non prime
mark(j - low) = false;
j += prime(i);
}
i += 1;
}
i = low;
// Display prime elements
while (i < high)
{
if (mark(i - low) == true)
{
print(" " + i);
}
i += 1;
}
// Update of all multiple of value is non prime
high = high + limit;
low = low + limit;
}
}
}
object Main
{
def main(args: Array[String]): Unit = {
var task: Sieve = new Sieve();
// Test
task.segmentedSieve(100, 200);
task.segmentedSieve(999, 1200);
}
}
Output
Prime number in range of (100,200)
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
Prime number in range of (999,1200)
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
import Foundation;
// Swift 4 program for
// Find the prime numbers between given range using segmented sieve
class Sieve
{
func eratosthenesSieve(_ prime: inout[Int], _ n: Int)
{
// Set all element as prime
var mark: [Bool] = Array(repeating: true, count: n + 1);
mark[0] = false;
mark[1] = false;
var i: Int = 2;
while (i <= n)
{
if (mark[i] == true)
{
// Collect prime element
prime.append(i);
var j: Int = i * i;
while (j <= n)
{
mark[j] = false;
j += i;
}
}
i += 1;
}
}
func segmentedSieve(_ s: Int, _ e: Int)
{
if (s < 0 || e < 2)
{
return;
}
print("\n Prime number in range of (", s ,",", e ,")");
var prime: [Int] = [Int]();
// Get the initial prime number by given e
let limit: Int = Int((floor(Double(e).squareRoot()) + 1));
// Starting value
var low: Int = s;
var high: Int = (limit) + s;
var value: Int = 0;
// Container which is used to detect (√e) prime element
var mark: [Bool] = Array(repeating: false, count: limit + 1);
// Find first (√e) prime number
self.eratosthenesSieve(&prime, limit);
var i: Int = 0;
while (i < prime.count)
{
if (prime[i] >= s)
{
print(" ", prime[i], terminator: "");
}
i += 1;
}
// This loop displays the remaining prime number between (√e .. e)
while (low < e)
{
i = 0;
// Set next (√e) prime number is valid
while (i <= limit)
{
mark[i] = true;
i += 1;
}
if (high >= e)
{
// When next prime pair are greater than e
// Set high value to e
high = e;
}
i = 0;
while (i < prime.count)
{
value = Int((floor(Double(low / prime[i])) * Double(prime[i])));
if (value < low)
{
// Add current prime value
value += prime[i];
}
var j: Int = value;
while (j < high)
{
// Set mutiple is non prime
mark[j - low] = false;
j += prime[i];
}
i += 1;
}
i = low;
// Display prime elements
while (i < high)
{
if (mark[i - low] == true)
{
print(" ", i, terminator: "");
}
i += 1;
}
// Update of all multiple of value is non prime
high = high + limit;
low = low + limit;
}
}
}
func main()
{
let task: Sieve = Sieve();
// Test
task.segmentedSieve(100, 200);
task.segmentedSieve(999, 1200);
}
main();
Output
Prime number in range of ( 100 , 200 )
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
Prime number in range of ( 999 , 1200 )
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
// Kotlin program for
// Find the prime numbers between given range using segmented sieve
class Sieve
{
fun eratosthenesSieve(prime: MutableList < Int > , n : Int): Unit
{
// Set all element as prime
val mark: Array < Boolean > = Array(n + 1)
{
true
};
mark[0] = false;
mark[1] = false;
var i: Int = 2;
while (i <= n)
{
if (mark[i] == true)
{
// Collect prime element
prime.add(i);
var j: Int = i * i;
while (j <= n)
{
mark[j] = false;
j += i;
}
}
i += 1;
}
}
fun segmentedSieve(s: Int, e: Int): Unit
{
if (s < 0 || e < 2)
{
return;
}
println("\n Prime number in range of (" + s + "," + e + ")");
var prime: MutableList < Int > = mutableListOf < Int > ();
// Get the initial prime number by given e
val limit: Int = (Math.floor(Math.sqrt(e.toDouble())) + 1.0).toInt();
// Starting value
var low: Int = s;
var high: Int = (limit) + s;
var value: Int ;
// Container which is used to detect (√e) prime element
val mark: Array < Boolean > = Array(limit + 1)
{
false
};
// Find first (√e) prime number
this.eratosthenesSieve(prime, limit);
var i: Int = 0;
while (i < prime.size)
{
if (prime[i] >= s)
{
print(" " + prime[i]);
}
i += 1;
}
// This loop displays the remaining prime number between (√e .. e)
while (low < e)
{
i = 0;
// Set next (√e) prime number is valid
while (i <= limit)
{
mark[i] = true;
i += 1;
}
if (high >= e)
{
// When next prime pair are greater than e
// Set high value to e
high = e;
}
i = 0;
while (i < prime.size)
{
value = (Math.floor(
(low / prime[i]).toDouble()
) * prime[i]).toInt();
if (value < low)
{
// Add current prime value
value += prime[i];
}
var j: Int = value;
while (j < high)
{
// Set mutiple is non prime
mark[j - low] = false;
j += prime[i];
}
i += 1;
}
i = low;
// Display prime elements
while (i < high)
{
if (mark[i - low] == true)
{
print(" " + i);
}
i += 1;
}
// Update of all multiple of value is non prime
high = high + limit;
low = low + limit;
}
}
}
fun main(args: Array < String > ): Unit
{
val task: Sieve = Sieve();
// Test
task.segmentedSieve(100, 200);
task.segmentedSieve(999, 1200);
}
Output
Prime number in range of (100,200)
101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199
Prime number in range of (999,1200)
1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069 1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187 1193
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment