Find N-th element in geometric progression series
Here given code implementation process.
// C program
// Find N-th element in geometric progression series
#include <stdio.h>
#include <math.h>
// Find nth term of geometric progression
// a : starting point
// ratio : common ratio
// n : nth element
void nth_gp_element(double a, double ratio, int n)
{
printf("\n [ Start : %lf, Ratio : %lf, N-th : %d ] ", a, ratio, n);
//Find nth element in GP
double result = a * (pow(ratio, n - 1));
printf("\n Result : %lf", result);
}
// Driver code
int main()
{
// Test Cases
nth_gp_element(3, 2, 6);
nth_gp_element(2, 3, 7);
nth_gp_element(4.3, 3, 3);
return 0;
}
Output
[ Start : 3.000000, Ratio : 2.000000, N-th : 6 ]
Result : 96.000000
[ Start : 2.000000, Ratio : 3.000000, N-th : 7 ]
Result : 1458.000000
[ Start : 4.300000, Ratio : 3.000000, N-th : 3 ]
Result : 38.700000
// Java program
// Find N-th element in geometric progression series
class MyMath
{
// Find nth term of geometric progression
// a : starting point
// ratio : common ratio
// n : nth element
public void nth_gp_element(double a, double ratio, int n)
{
System.out.print("\n [ Start : " + a + ", Ratio : " + ratio + ", N-th : " + n + " ] ");
//Find nth element in GP
double result = a * (Math.pow(ratio, n - 1));
System.out.print("\n Result : " + result);
}
public static void main(String[] args)
{
MyMath obj = new MyMath();
// Test Cases
obj.nth_gp_element(3, 2, 6);
obj.nth_gp_element(2, 3, 7);
obj.nth_gp_element(4.3, 3, 3);
}
}
Output
[ Start : 3.0, Ratio : 2.0, N-th : 6 ]
Result : 96.0
[ Start : 2.0, Ratio : 3.0, N-th : 7 ]
Result : 1458.0
[ Start : 4.3, Ratio : 3.0, N-th : 3 ]
Result : 38.699999999999996
//Include header file
#include <iostream>
#include<math.h>
using namespace std;
// C++ program
// Find N-th element in geometric progression series
class MyMath
{
public:
// Find nth term of geometric progression
// a : starting point
// ratio : common ratio
// n : nth element
void nth_gp_element(double a, double ratio, int n)
{
cout << "\n [ Start : " << a << ", Ratio : " << ratio << ", N-th : " << n << " ] ";
//Find nth element in GP
double result = a * (pow(ratio, n - 1));
cout << "\n Result : " << result;
}
};
int main()
{
MyMath obj = MyMath();
// Test Cases
obj.nth_gp_element(3, 2, 6);
obj.nth_gp_element(2, 3, 7);
obj.nth_gp_element(4.3, 3, 3);
return 0;
}
Output
[ Start : 3, Ratio : 2, N-th : 6 ]
Result : 96
[ Start : 2, Ratio : 3, N-th : 7 ]
Result : 1458
[ Start : 4.3, Ratio : 3, N-th : 3 ]
Result : 38.7
//Include namespace system
using System;
// C# program
// Find N-th element in geometric progression series
class MyMath
{
// Find nth term of geometric progression
// a : starting point
// ratio : common ratio
// n : nth element
public void nth_gp_element(double a, double ratio, int n)
{
Console.Write("\n [ Start : " + a + ", Ratio : " + ratio + ", N-th : " + n + " ] ");
//Find nth element in GP
double result = a * (Math.Pow(ratio, n - 1));
Console.Write("\n Result : " + result);
}
public static void Main(String[] args)
{
MyMath obj = new MyMath();
// Test Cases
obj.nth_gp_element(3, 2, 6);
obj.nth_gp_element(2, 3, 7);
obj.nth_gp_element(4.3, 3, 3);
}
}
Output
[ Start : 3, Ratio : 2, N-th : 6 ]
Result : 96
[ Start : 2, Ratio : 3, N-th : 7 ]
Result : 1458
[ Start : 4.3, Ratio : 3, N-th : 3 ]
Result : 38.7
<?php
// Php program
// Find N-th element in geometric progression series
class MyMath
{
// Find nth term of geometric progression
// a : starting point
// ratio : common ratio
// n : nth element
public function nth_gp_element($a, $ratio, $n)
{
echo "\n [ Start : ". $a .", Ratio : ". $ratio .", N-th : ". $n ." ] ";
//Find nth element in GP
$result = $a * (pow($ratio, $n - 1));
echo "\n Result : ". $result;
}
}
function main()
{
$obj = new MyMath();
// Test Cases
$obj->nth_gp_element(3, 2, 6);
$obj->nth_gp_element(2, 3, 7);
$obj->nth_gp_element(4.3, 3, 3);
}
main();
Output
[ Start : 3, Ratio : 2, N-th : 6 ]
Result : 96
[ Start : 2, Ratio : 3, N-th : 7 ]
Result : 1458
[ Start : 4.3, Ratio : 3, N-th : 3 ]
Result : 38.7
// Node Js program
// Find N-th element in geometric progression series
class MyMath
{
// Find nth term of geometric progression
// a : starting point
// ratio : common ratio
// n : nth element
nth_gp_element(a, ratio, n)
{
process.stdout.write("\n [ Start : " + a + ", Ratio : " + ratio + ", N-th : " + n + " ] ");
//Find nth element in GP
var result = a * (Math.pow(ratio, n - 1));
process.stdout.write("\n Result : " + result);
}
}
function main()
{
var obj = new MyMath();
// Test Cases
obj.nth_gp_element(3, 2, 6);
obj.nth_gp_element(2, 3, 7);
obj.nth_gp_element(4.3, 3, 3);
}
main();
Output
[ Start : 3, Ratio : 2, N-th : 6 ]
Result : 96
[ Start : 2, Ratio : 3, N-th : 7 ]
Result : 1458
[ Start : 4.3, Ratio : 3, N-th : 3 ]
Result : 38.699999999999996
# Python 3 program
# Find N-th element in geometric progression series
class MyMath :
# Find nth term of geometric progression
# a : starting point
# ratio : common ratio
# n : nth element
def nth_gp_element(self, a, ratio, n) :
print("\n [ Start : ", a ,", Ratio : ", ratio ,", N-th : ", n ," ] ", end = "")
# Find nth element in GP
result = a * (ratio**(n - 1))
print("\n Result : ", result, end = "")
def main() :
obj = MyMath()
# Test Cases
obj.nth_gp_element(3, 2, 6)
obj.nth_gp_element(2, 3, 7)
obj.nth_gp_element(4.3, 3, 3)
if __name__ == "__main__": main()
Output
[ Start : 3 , Ratio : 2 , N-th : 6 ]
Result : 96
[ Start : 2 , Ratio : 3 , N-th : 7 ]
Result : 1458
[ Start : 4.3 , Ratio : 3 , N-th : 3 ]
Result : 38.699999999999996
# Ruby program
# Find N-th element in geometric progression series
class MyMath
# Find nth term of geometric progression
# a : starting point
# ratio : common ratio
# n : nth element
def nth_gp_element(a, ratio, n)
print("\n [ Start : ", a ,", Ratio : ", ratio ,", N-th : ", n ," ] ")
# Find nth element in GP
result = a * (ratio**(n - 1))
print("\n Result : ", result)
end
end
def main()
obj = MyMath.new()
# Test Cases
obj.nth_gp_element(3, 2, 6)
obj.nth_gp_element(2, 3, 7)
obj.nth_gp_element(4.3, 3, 3)
end
main()
Output
[ Start : 3, Ratio : 2, N-th : 6 ]
Result : 96
[ Start : 2, Ratio : 3, N-th : 7 ]
Result : 1458
[ Start : 4.3, Ratio : 3, N-th : 3 ]
Result : 38.699999999999996
// Scala program
// Find N-th element in geometric progression series
class MyMath
{
// Find nth term of geometric progression
// a : starting point
// ratio : common ratio
// n : nth element
def nth_gp_element(a: Double, ratio: Double, n: Int): Unit = {
print("\n [ Start : " + a + ", Ratio : " + ratio + ", N-th : " + n + " ] ");
//Find nth element in GP
var result: Double = a * (Math.pow(ratio, n - 1));
print("\n Result : " + result);
}
}
object Main
{
def main(args: Array[String]): Unit = {
var obj: MyMath = new MyMath();
// Test Cases
obj.nth_gp_element(3, 2, 6);
obj.nth_gp_element(2, 3, 7);
obj.nth_gp_element(4.3, 3, 3);
}
}
Output
[ Start : 3.0, Ratio : 2.0, N-th : 6 ]
Result : 96.0
[ Start : 2.0, Ratio : 3.0, N-th : 7 ]
Result : 1458.0
[ Start : 4.3, Ratio : 3.0, N-th : 3 ]
Result : 38.699999999999996
import Foundation
// Swift program
// Find N-th element in geometric progression series
class MyMath
{
// Find nth term of geometric progression
// a : starting point
// ratio : common ratio
// n : nth element
func nth_gp_element(_ a: Double, _ ratio: Double, _ n: Int)
{
print("\n [ Start : ", a ,", Ratio : ", ratio ,", N-th : ", n ," ] ", terminator: "");
//Find nth element in GP
let result: Double = a * (pow(ratio, Double(n - 1)));
print("\n Result : ", result, terminator: "");
}
}
func main()
{
let obj: MyMath = MyMath();
// Test Cases
obj.nth_gp_element(3, 2, 6);
obj.nth_gp_element(2, 3, 7);
obj.nth_gp_element(4.3, 3, 3);
}
main();
Output
[ Start : 3.0 , Ratio : 2.0 , N-th : 6 ]
Result : 96.0
[ Start : 2.0 , Ratio : 3.0 , N-th : 7 ]
Result : 1458.0
[ Start : 4.3 , Ratio : 3.0 , N-th : 3 ]
Result : 38.7
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment