Skip to main content

Find the missing number in arithmetic progression

An arithmetic progression is a sequence of numbers in which each term is obtained by adding a fixed number (called the common difference) to the preceding term. For example, 2, 4, 6, 8, 10 is an arithmetic progression with a common difference of 2.

The missing number in an arithmetic progression can be found using the divide and conquer approach. Here's how:

  1. Calculate the middle term of the sequence using the formula: middle term = (first term + last term) / 2 where the first term is the first number in the sequence, the last term is the last number in the sequence, and the middle term is the number in the middle of the sequence.

  2. Calculate the difference between the middle term and the first term of the sequence. This gives us the expected common difference between consecutive terms in the sequence.

  3. Check if the middle term is the missing number in the sequence. If it is, then we have found the missing number.

  4. If the middle term is not the missing number, then we need to check which half of the sequence the missing number is in. If the difference between the middle term and the first term is equal to the expected common difference, then the missing number is in the second half of the sequence. Otherwise, the missing number is in the first half of the sequence.

  5. Repeat steps 1-4 for the half of the sequence that the missing number is in.

  6. Continue the process until the missing number is found.

This approach is efficient because it reduces the search space by half with each iteration, leading to a logarithmic time complexity of O(log n), where n is the length of the sequence.

Here given code implementation process.

// C program for
// Find the missing number in arithmetic progression
#include <stdio.h>

int missingNo(int series[], int low, int high, int interval)
{
	if (low >= high)
	{
		// When no result
		return -1;
	}
	// Find middle element
	int mid = low + (high - low) / 2;
	if (mid + 1 <= high && (series[mid + 1] - series[mid]) != interval)
	{
		return series[mid] + interval;
	}
	if (mid > 0 && (series[mid] - series[mid - 1]) != interval)
	{
		return series[mid - 1] + interval;
	}
	if ((mid *interval) + series[0] == series[mid])
	{
		// When the middle position element is a valid element 
		// of the given arithmetic progression.
		// Check sequence of right-sided elements from middle.
		return missingNo(series, mid + 1, high, interval);
	}
	// Check sequence of left-sided elements from middle.
	return missingNo(series, low, mid - 1, interval);
}
void missingArithmeticPro(int series[], int n)
{
	if (n > 1)
	{
		// When n is more than 1
		// Find interval between sequence
		int interval = (series[n - 1] - series[0]) / n;
		// Find missing element
		int value = missingNo(series, 0, n - 1, interval);
		// Display missing element
		printf("\n %d", value);
	}
}
int main(int argc, char
	const *argv[])
{
	// Arithmetic progression series with one missing element
	int a[] = {
		1 , 4 , 7 , 13 , 16 , 19
	};
	int b[] = {
		6 , 12 , 18 , 30 , 36 , 42 , 48 , 54 , 60 , 66
	};
	int c[] = {
		2 , 5 , 11 , 14
	};
	// Note : Here first and last elements 
    // are not considered as missing.
	// Test A 
	int n = sizeof(a) / sizeof(a[0]);
	missingArithmeticPro(a, n);
	// Test B 
	n = sizeof(b) / sizeof(b[0]);
	missingArithmeticPro(b, n);
	// Test C 
	n = sizeof(c) / sizeof(c[0]);
	missingArithmeticPro(c, n);
	return 0;
}

Output

 10
 24
 8
/*
    Java program
    Find the missing number in arithmetic progression
*/
public class ArithmeticProgression
{
	public int missingNo(int[] series, int low, int high, int interval)
	{
		if (low >= high)
		{
			// When no result
			return -1;
		}
		// Find middle element
		int mid = low + (high - low) / 2;
		if (mid + 1 <= high && (series[mid + 1] - series[mid]) != interval)
		{
			return series[mid] + interval;
		}
		if (mid > 0 && (series[mid] - series[mid - 1]) != interval)
		{
			return series[mid - 1] + interval;
		}
		if ((mid * interval) + series[0] == series[mid])
		{
			// When the middle position element is a valid element 
			// of the given arithmetic progression.
			// Check sequence of right-sided elements from middle.
			return missingNo(series, mid + 1, high, interval);
		}
		// Check sequence of left-sided elements from middle.
		return missingNo(series, low, mid - 1, interval);
	}
	public void missingArithmeticPro(int[] series, int n)
	{
		if (n > 1)
		{
			// When n is more than 1
			// Find interval between sequence
			int interval = (series[n - 1] - series[0]) / n;
			// Find missing element
			int value = missingNo(series, 0, n - 1, interval);
			// Display missing element
			System.out.print("\n " + value);
		}
	}
	public static void main(String[] args)
	{
		ArithmeticProgression task = new ArithmeticProgression();
		// Arithmetic progression series with one missing element
		int[] a = {
			1 , 4 , 7 , 13 , 16 , 19
		};
		int[] b = {
			6 , 12 , 18 , 30 , 36 , 42 , 48 , 54 , 60 , 66
		};
		int[] c = {
			2 , 5 , 11 , 14
		};
		// Note : Here first and last elements 
		// are not considered as missing.
		// Test A 
		int n = a.length;
		task.missingArithmeticPro(a, n);
		// Test B 
		n = b.length;
		task.missingArithmeticPro(b, n);
		// Test C 
		n = c.length;
		task.missingArithmeticPro(c, n);
	}
}

Output

 10
 24
 8
// Include header file
#include <iostream>
using namespace std;
/*
    C++ program
    Find the missing number in arithmetic progression
*/
class ArithmeticProgression
{
	public: int missingNo(int series[], 
      int low, 
        int high, 
          int interval)
	{
		if (low >= high)
		{
			// When no result
			return -1;
		}
		// Find middle element
		int mid = low + (high - low) / 2;
		if (mid + 1 <= high && (series[mid + 1] - series[mid]) != interval)
		{
			return series[mid] + interval;
		}
		if (mid > 0 && (series[mid] - series[mid - 1]) != interval)
		{
			return series[mid - 1] + interval;
		}
		if ((mid *interval) + series[0] == series[mid])
		{
			// When the middle position element is a valid element 
			// of the given arithmetic progression.
			// Check sequence of right-sided elements from middle.
			return this->missingNo(series, mid + 1, high, interval);
		}
		// Check sequence of left-sided elements from middle.
		return this->missingNo(series, low, mid - 1, interval);
	}
	void missingArithmeticPro(int series[], int n)
	{
		if (n > 1)
		{
			// When n is more than 1
			// Find interval between sequence
			int interval = (series[n - 1] - series[0]) / n;
			// Find missing element
			int value = this->missingNo(series, 0, n - 1, interval);
			// Display missing element
			cout << "\n " << value;
		}
	}
};
int main()
{
	ArithmeticProgression *task = new ArithmeticProgression();
	// Arithmetic progression series with one missing element
	int a[] = {
		1 , 4 , 7 , 13 , 16 , 19
	};
	int b[] = {
		6 , 12 , 18 , 30 , 36 , 42 , 48 , 54 , 60 , 66
	};
	int c[] = {
		2 , 5 , 11 , 14
	};
	// Note : Here first and last elements 
	// are not considered as missing.
	// Test A 
	int n = sizeof(a) / sizeof(a[0]);
	task->missingArithmeticPro(a, n);
	// Test B 
	n = sizeof(b) / sizeof(b[0]);
	task->missingArithmeticPro(b, n);
	// Test C 
	n = sizeof(c) / sizeof(c[0]);
	task->missingArithmeticPro(c, n);
	return 0;
}

Output

 10
 24
 8
// Include namespace system
using System;
/*
    Csharp program
    Find the missing number in arithmetic progression
*/
public class ArithmeticProgression
{
	public int missingNo(int[] series, 
                        int low, 
                        int high,
                        int interval)
	{
		if (low >= high)
		{
			// When no result
			return -1;
		}
		// Find middle element
		int mid = low + (high - low) / 2;
		if (mid + 1 <= high && (series[mid + 1] - series[mid]) != interval)
		{
			return series[mid] + interval;
		}
		if (mid > 0 && (series[mid] - series[mid - 1]) != interval)
		{
			return series[mid - 1] + interval;
		}
		if ((mid * interval) + series[0] == series[mid])
		{
			// When the middle position element is a valid element 
			// of the given arithmetic progression.
			// Check sequence of right-sided elements from middle.
			return this.missingNo(series, mid + 1, high, interval);
		}
		// Check sequence of left-sided elements from middle.
		return this.missingNo(series, low, mid - 1, interval);
	}
	public void missingArithmeticPro(int[] series, int n)
	{
		if (n > 1)
		{
			// When n is more than 1
			// Find interval between sequence
			int interval = (series[n - 1] - series[0]) / n;
			// Find missing element
			int value = this.missingNo(series, 0, n - 1, interval);
			// Display missing element
			Console.Write("\n " + value);
		}
	}
	public static void Main(String[] args)
	{
		ArithmeticProgression task = new ArithmeticProgression();
		// Arithmetic progression series with one missing element
		int[] a = {
			1 , 4 , 7 , 13 , 16 , 19
		};
		int[] b = {
			6 , 12 , 18 , 30 , 36 , 42 , 48 , 54 , 60 , 66
		};
		int[] c = {
			2 , 5 , 11 , 14
		};
		// Note : Here first and last elements 
		// are not considered as missing.
		// Test A 
		int n = a.Length;
		task.missingArithmeticPro(a, n);
		// Test B 
		n = b.Length;
		task.missingArithmeticPro(b, n);
		// Test C 
		n = c.Length;
		task.missingArithmeticPro(c, n);
	}
}

Output

 10
 24
 8
package main
import "fmt"
/*
    Go program
    Find the missing number in arithmetic progression
*/
type ArithmeticProgression struct {}
func getArithmeticProgression() * ArithmeticProgression {
	var me *ArithmeticProgression = &ArithmeticProgression {}
	return me
}
func(this ArithmeticProgression) missingNo(series[] int, 
		low int, high int, interval int) int {
	if low >= high {
		// When no result
		return -1
	}
	// Find middle element
	var mid int = low + (high - low) / 2
	if mid + 1 <= high && (series[mid + 1] - series[mid]) != interval {
		return series[mid] + interval
	}
	if mid > 0 && (series[mid] - series[mid - 1]) != interval {
		return series[mid - 1] + interval
	}
	if (mid * interval) + series[0] == series[mid] {
		// When the middle position element is a valid element 
		// of the given arithmetic progression.
		// Check sequence of right-sided elements from middle.
		return this.missingNo(series, mid + 1, high, interval)
	}
	// Check sequence of left-sided elements from middle.
	return this.missingNo(series, low, mid - 1, interval)
}
func(this ArithmeticProgression) missingArithmeticPro(series[] int, n int) {
	if n > 1 {
		// When n is more than 1
		// Find interval between sequence
		var interval int = (series[n - 1] - series[0]) / n
		// Find missing element
		var value int = this.missingNo(series, 0, n - 1, interval)
		// Display missing element
		fmt.Print("\n ", value)
	}
}
func main() {
	var task * ArithmeticProgression = getArithmeticProgression()
	// Arithmetic progression series with one missing element
	var a = [] int {
		1,
		4,
		7,
		13,
		16,
		19,
	}
	var b = [] int {
		6,
		12,
		18,
		30,
		36,
		42,
		48,
		54,
		60,
		66,
	}
	var c = [] int {
		2,
		5,
		11,
		14,
	}
	// Note : Here first and last elements 
	// are not considered as missing.
	// Test A 
	var n int = len(a)
	task.missingArithmeticPro(a, n)
	// Test B 
	n = len(b)
	task.missingArithmeticPro(b, n)
	// Test C 
	n = len(c)
	task.missingArithmeticPro(c, n)
}

Output

 10
 24
 8
<?php
/*
    Php program
    Find the missing number in arithmetic progression
*/
class ArithmeticProgression
{
	public	function missingNo($series, $low, $high, $interval)
	{
		if ($low >= $high)
		{
			// When no result
			return -1;
		}
		// Find middle element
		$mid = $low + (int)(($high - $low) / 2);
		if ($mid + 1 <= $high && 
            ($series[$mid + 1] - $series[$mid]) != $interval)
		{
			return $series[$mid] + $interval;
		}
		if ($mid > 0 && 
            ($series[$mid] - $series[$mid - 1]) != $interval)
		{
			return $series[$mid - 1] + $interval;
		}
		if (($mid * $interval) + $series[0] == $series[$mid])
		{
			// When the middle position element is a valid element 
			// of the given arithmetic progression.
			// Check sequence of right-sided elements from middle.
			return $this->missingNo($series, $mid + 1, $high, $interval);
		}
		// Check sequence of left-sided elements from middle.
		return $this->missingNo($series, $low, $mid - 1, $interval);
	}
	public	function missingArithmeticPro($series, $n)
	{
		if ($n > 1)
		{
			// When n is more than 1
			// Find interval between sequence
			$interval = (int)(($series[$n - 1] - $series[0]) / $n);
			// Find missing element
			$value = $this->missingNo($series, 0, $n - 1, $interval);
			// Display missing element
			echo("\n ".$value);
		}
	}
}

function main()
{
	$task = new ArithmeticProgression();
	// Arithmetic progression series with one missing element
	$a = array(1, 4, 7, 13, 16, 19);
	$b = array(6, 12, 18, 30, 36, 42, 48, 54, 60, 66);
	$c = array(2, 5, 11, 14);
	// Note : Here first and last elements 
	// are not considered as missing.
	// Test A 
	$n = count($a);
	$task->missingArithmeticPro($a, $n);
	// Test B 
	$n = count($b);
	$task->missingArithmeticPro($b, $n);
	// Test C 
	$n = count($c);
	$task->missingArithmeticPro($c, $n);
}
main();

Output

 10
 24
 8
/*
    Node JS program
    Find the missing number in arithmetic progression
*/
class ArithmeticProgression
{
	missingNo(series, low, high, interval)
	{
		if (low >= high)
		{
			// When no result
			return -1;
		}
		// Find middle element
		var mid = low + parseInt((high - low) / 2);
		if (mid + 1 <= high && (series[mid + 1] - series[mid]) != interval)
		{
			return series[mid] + interval;
		}
		if (mid > 0 && (series[mid] - series[mid - 1]) != interval)
		{
			return series[mid - 1] + interval;
		}
		if ((mid * interval) + series[0] == series[mid])
		{
			// When the middle position element is a valid element 
			// of the given arithmetic progression.
			// Check sequence of right-sided elements from middle.
			return this.missingNo(series, mid + 1, high, interval);
		}
		// Check sequence of left-sided elements from middle.
		return this.missingNo(series, low, mid - 1, interval);
	}
	missingArithmeticPro(series, n)
	{
		if (n > 1)
		{
			// When n is more than 1
			// Find interval between sequence
			var interval = parseInt((series[n - 1] - series[0]) / n);
			// Find missing element
			var value = this.missingNo(series, 0, n - 1, interval);
			// Display missing element
			process.stdout.write("\n " + value);
		}
	}
}

function main()
{
	var task = new ArithmeticProgression();
	// Arithmetic progression series with one missing element
	var a = [1, 4, 7, 13, 16, 19];
	var b = [6, 12, 18, 30, 36, 42, 48, 54, 60, 66];
	var c = [2, 5, 11, 14];
	// Note : Here first and last elements 
	// are not considered as missing.
	// Test A 
	var n = a.length;
	task.missingArithmeticPro(a, n);
	// Test B 
	n = b.length;
	task.missingArithmeticPro(b, n);
	// Test C 
	n = c.length;
	task.missingArithmeticPro(c, n);
}
main();

Output

 10
 24
 8
#    Python 3 program
#    Find the missing number in arithmetic progression
class ArithmeticProgression :
	def missingNo(self, series, low, high, interval) :
		if (low >= high) :
			#  When no result
			return -1
		
		#  Find middle element
		mid = low + int((high - low) / 2)
		if (mid + 1 <= high and(series[mid + 1] - series[mid]) != interval) :
			return series[mid] + interval
		
		if (mid > 0 and(series[mid] - series[mid - 1]) != interval) :
			return series[mid - 1] + interval
		
		if ((mid * interval) + series[0] == series[mid]) :
			#  When the middle position element is a valid element 
			#  of the given arithmetic progression.
			#  Check sequence of right-sided elements from middle.
			return self.missingNo(series, mid + 1, high, interval)
		
		#  Check sequence of left-sided elements from middle.
		return self.missingNo(series, low, mid - 1, interval)
	
	def missingArithmeticPro(self, series, n) :
		if (n > 1) :
			#  When n is more than 1
			#  Find interval between sequence
			interval = int((series[n - 1] - series[0]) / n)
			#  Find missing element
			value = self.missingNo(series, 0, n - 1, interval)
			#  Display missing element
			print("\n ", value, end = "")
		
	

def main() :
	task = ArithmeticProgression()
	#  Arithmetic progression series with one missing element
	a = [1, 4, 7, 13, 16, 19]
	b = [6, 12, 18, 30, 36, 42, 48, 54, 60, 66]
	c = [2, 5, 11, 14]
	#  Note : Here first and last elements 
	#  are not considered as missing.
	#  Test A 
	n = len(a)
	task.missingArithmeticPro(a, n)
	#  Test B 
	n = len(b)
	task.missingArithmeticPro(b, n)
	#  Test C 
	n = len(c)
	task.missingArithmeticPro(c, n)

if __name__ == "__main__": main()

Output

  10
  24
  8
#    Ruby program
#    Find the missing number in arithmetic progression
class ArithmeticProgression 
	def missingNo(series, low, high, interval) 
		if (low >= high) 
			#  When no result
			return -1
		end

		#  Find middle element
		mid = low + (high - low) / 2
		if (mid + 1 <= high && (series[mid + 1] - series[mid]) != interval) 
			return series[mid] + interval
		end

		if (mid > 0 && (series[mid] - series[mid - 1]) != interval) 
			return series[mid - 1] + interval
		end

		if ((mid * interval) + series[0] == series[mid]) 
			#  When the middle position element is a valid element 
			#  of the given arithmetic progression.
			#  Check sequence of right-sided elements from middle.
			return self.missingNo(series, mid + 1, high, interval)
		end

		#  Check sequence of left-sided elements from middle.
		return self.missingNo(series, low, mid - 1, interval)
	end

	def missingArithmeticPro(series, n) 
		if (n > 1) 
			#  When n is more than 1
			#  Find interval between sequence
			interval = (series[n - 1] - series[0]) / n
			#  Find missing element
			value = self.missingNo(series, 0, n - 1, interval)
			#  Display missing element
			print("\n ", value)
		end

	end

end

def main() 
	task = ArithmeticProgression.new()
	#  Arithmetic progression series with one missing element
	a = [1, 4, 7, 13, 16, 19]
	b = [6, 12, 18, 30, 36, 42, 48, 54, 60, 66]
	c = [2, 5, 11, 14]
	#  Note : Here first and last elements 
	#  are not considered as missing.
	#  Test A 
	n = a.length
	task.missingArithmeticPro(a, n)
	#  Test B 
	n = b.length
	task.missingArithmeticPro(b, n)
	#  Test C 
	n = c.length
	task.missingArithmeticPro(c, n)
end

main()

Output

 10
 24
 8
/*
    Scala program
    Find the missing number in arithmetic progression
*/
class ArithmeticProgression()
{
	def missingNo(series: Array[Int], low: Int, 
      				high: Int, interval: Int): Int = {
		if (low >= high)
		{
			// When no result
			return -1;
		}
		// Find middle element
		var mid: Int = low + (high - low) / 2;
		if (mid + 1 <= high && (series(mid + 1) - series(mid)) != interval)
		{
			return series(mid) + interval;
		}
		if (mid > 0 && (series(mid) - series(mid - 1)) != interval)
		{
			return series(mid - 1) + interval;
		}
		if ((mid * interval) + series(0) == series(mid))
		{
			// When the middle position element is a valid element 
			// of the given arithmetic progression.
			// Check sequence of right-sided elements from middle.
			return missingNo(series, mid + 1, high, interval);
		}
		// Check sequence of left-sided elements from middle.
		return missingNo(series, low, mid - 1, interval);
	}
	def missingArithmeticPro(series: Array[Int], n: Int): Unit = {
		if (n > 1)
		{
			// When n is more than 1
			// Find interval between sequence
			var interval: Int = (series(n - 1) - series(0)) / n;
			// Find missing element
			var value: Int = missingNo(series, 0, n - 1, interval);
			// Display missing element
			print("\n " + value);
		}
	}
}
object Main
{
	def main(args: Array[String]): Unit = {
		var task: ArithmeticProgression = new ArithmeticProgression();
		// Arithmetic progression series with one missing element
		var a: Array[Int] = Array(1, 4, 7, 13, 16, 19);
		var b: Array[Int] = Array(6, 12, 18, 30, 36, 42, 48, 54, 60, 66);
		var c: Array[Int] = Array(2, 5, 11, 14);
		// Note : Here first and last elements 
		// are not considered as missing.
		// Test A 
		var n: Int = a.length;
		task.missingArithmeticPro(a, n);
		// Test B 
		n = b.length;
		task.missingArithmeticPro(b, n);
		// Test C 
		n = c.length;
		task.missingArithmeticPro(c, n);
	}
}

Output

 10
 24
 8
import Foundation;
/*
    Swift 4 program
    Find the missing number in arithmetic progression
*/
class ArithmeticProgression
{
	func missingNo(_ series: [Int], 
  				   _ low: Int, _ high: Int, _ interval: Int) -> Int
	{
		if (low >= high)
		{
			// When no result
			return -1;
		}
		// Find middle element
		let mid: Int = low + (high - low) / 2;
		if (mid + 1 <= high && (series[mid + 1] - series[mid])  != interval)
		{
			return series[mid] + interval;
		}
		if (mid > 0 && (series[mid] - series[mid - 1])  != interval)
		{
			return series[mid - 1] + interval;
		}
		if ((mid * interval) + series[0] == series[mid])
		{
			// When the middle position element is a valid element 
			// of the given arithmetic progression.
			// Check sequence of right-sided elements from middle.
			return self.missingNo(series, mid + 1, high, interval);
		}
		// Check sequence of left-sided elements from middle.
		return self.missingNo(series, low, mid - 1, interval);
	}
	func missingArithmeticPro(_ series: [Int], _ n: Int)
	{
		if (n > 1)
		{
			// When n is more than 1
			// Find interval between sequence
			let interval: Int = (series[n - 1] - series[0]) / n;
			// Find missing element
			let value: Int = self.missingNo(series, 0, n - 1, interval);
			// Display missing element
			print("\n ", value, terminator: "");
		}
	}
}
func main()
{
	let task: ArithmeticProgression = ArithmeticProgression();
	// Arithmetic progression series with one missing element
	let a: [Int] = [1, 4, 7, 13, 16, 19];
	let b: [Int] = [6, 12, 18, 30, 36, 42, 48, 54, 60, 66];
	let c: [Int] = [2, 5, 11, 14];
	// Note : Here first and last elements 
	// are not considered as missing.
	// Test A 
	var n: Int = a.count;
	task.missingArithmeticPro(a, n);
	// Test B 
	n = b.count;
	task.missingArithmeticPro(b, n);
	// Test C 
	n = c.count;
	task.missingArithmeticPro(c, n);
}
main();

Output

  10
  24
  8
/*
    Kotlin program
    Find the missing number in arithmetic progression
*/
class ArithmeticProgression
{
	fun missingNo(series: Array < Int > , 
                   low: Int, high: Int, interval: Int): Int
	{
		if (low >= high)
		{
			// When no result
			return -1;
		}
		// Find middle element
		val mid: Int = low + (high - low) / 2;
		if (mid + 1 <= high && (series[mid + 1] - series[mid]) != interval)
		{
			return series[mid] + interval;
		}
		if (mid > 0 && (series[mid] - series[mid - 1]) != interval)
		{
			return series[mid - 1] + interval;
		}
		if ((mid * interval) + series[0] == series[mid])
		{
			// When the middle position element is a valid element 
			// of the given arithmetic progression.
			// Check sequence of right-sided elements from middle.
			return this.missingNo(series, mid + 1, high, interval);
		}
		// Check sequence of left-sided elements from middle.
		return this.missingNo(series, low, mid - 1, interval);
	}
	fun missingArithmeticPro(series: Array < Int > , n: Int): Unit
	{
		if (n > 1)
		{
			// When n is more than 1
			// Find interval between sequence
			val interval: Int = (series[n - 1] - series[0]) / n;
			// Find missing element
			val value: Int = this.missingNo(series, 0, n - 1, interval);
			// Display missing element
			print("\n " + value);
		}
	}
}
fun main(args: Array < String > ): Unit
{
	val task: ArithmeticProgression = ArithmeticProgression();
	// Arithmetic progression series with one missing element
	val a: Array < Int > = arrayOf(1, 4, 7, 13, 16, 19);
	val b: Array < Int > = arrayOf(6, 12, 18, 30, 36, 42, 48, 54, 60, 66);
	val c: Array < Int > = arrayOf(2, 5, 11, 14);
	// Note : Here first and last elements 
	// are not considered as missing.
	// Test A 
	var n: Int = a.count();
	task.missingArithmeticPro(a, n);
	// Test B 
	n = b.count();
	task.missingArithmeticPro(b, n);
	// Test C 
	n = c.count();
	task.missingArithmeticPro(c, n);
}

Output

 10
 24
 8




Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

New Comment