Find maximum node in binary search tree
Here given code implementation process.
//C Program
//Find maximum node in binary search tree
#include <stdio.h>
#include <stdlib.h>
//structure of Binary Search Tree node
struct Node
{
int data;
struct Node *left, *right;
};
//Adding a new node in binary search tree
void add_node(struct Node **root, int data)
{
//Create a dynamic node of binary search tree
struct Node *new_node = (struct Node *) malloc(sizeof(struct Node));
if (new_node != NULL)
{
//Set data and pointer values
new_node->data = data;
new_node->left = NULL; //Initially node left-pointer is NULL
new_node->right = NULL; //Initially node right-pointer is NULL
if ( *root == NULL)
{
//When adds a first node in binary tree
*root = new_node;
}
else
{
struct Node *find = *root;
//iterate binary tree and add new node to proper position
while (find != NULL)
{
if (find->data > data)
{
if (find->left == NULL)
{
find->left = new_node;
break;
}
else
{ //visit left sub-tree
find = find->left;
}
}
else
{
if (find->right == NULL)
{
find->right = new_node;
break;
}
else
{
//visit right sub-tree
find = find->right;
}
}
}
}
}
else
{
printf("Memory Overflow\n");
exit(0); //Termaxate program execution
}
}
//Find and print maximum node of binary search tree
void max_node(struct Node *root)
{
if (root == NULL)
{
printf("\n Empty Tree");
}
else
{
printf(" Maximum node is : ");
struct Node *temp = root;
//Find rightmost node from to root
while (temp->right != NULL)
{
//Visit right node
temp = temp->right;
}
//Display node value
printf("%d\n", temp->data);
}
}
int main()
{
struct Node *root = NULL;
//Create binary search tree
/*
5
/ \
3 6
/ \ \
-7 4 11
\ / \
2 10 18
` /
16
*/
add_node( & root, 5);
add_node( & root, 3);
add_node( & root, 6);
add_node( & root, -7);
add_node( & root, 4);
add_node( & root, 11);
add_node( & root, 18);
add_node( & root, 2);
add_node( & root, 10);
add_node( & root, 16);
max_node(root);
return 0;
}
Output
Maximum node is : 18
//Java program
//Find maximum node in binary search tree
//Binary Tree Node
class Node
{
public int data;
public Node left;
public Node right;
public Node(int data)
{
this.data = data;
this.left = null;
this.right = null;
}
}
class BinarySearchTree
{
public Node root;
//Class constructors
public BinarySearchTree()
{
root = null;
}
//insert a new node in BST
public void add_node(int data)
{
//Create a new binary tree node
Node new_node = new Node(data);
if (new_node != null)
{
if (this.root == null)
{
//When adds a first node in binary tree
this.root = new_node;
}
else
{
Node find = this.root;
//add new node to proper position
while (find != null)
{
if (find.data >= data)
{
if (find.left == null)
{
find.left = new_node;
break;
}
else
{
//visit left sub-tree
find = find.left;
}
}
else
{
if (find.right == null)
{
find.right = new_node;
break;
}
else
{
//visit right sub-tree
find = find.right;
}
}
}
}
}
else
{
System.out.println("Memory Overflow");
}
}
//Find and print maximum node of binary search tree
public void max_node()
{
if (root == null)
{
System.out.print("\n Empty Tree");
}
else
{
System.out.print(" Maximum node is : ");
Node temp = root;
//Find rightmost node from to root
while (temp.right != null)
{
//Visit right node
temp = temp.right;
}
System.out.print(" " + temp.data + "\n");
}
}
public static void main(String[] args)
{
BinarySearchTree obj = new BinarySearchTree();
//Create binary search tree
/*
5
/ \
3 6
/ \ \
-7 4 11
\ / \
2 10 18
` /
16
*/
obj.add_node(5);
obj.add_node(3);
obj.add_node(6);
obj.add_node(-7);
obj.add_node(4);
obj.add_node(11);
obj.add_node(18);
obj.add_node(2);
obj.add_node(10);
obj.add_node(16);
obj.max_node();
}
}
Output
Maximum node is : 18
//Include header file
#include <iostream>
using namespace std;
//C++ program
//Find maximum node in binary search tree
//Binary Tree Node
class Node
{
public: int data;
Node * left;
Node * right;
Node(int data)
{
this->data = data;
this->left = NULL;
this->right = NULL;
}
};
class BinarySearchTree
{
public: Node * root;
//Class constructors
BinarySearchTree()
{
this->root = NULL;
}
//insert a new node in BST
void add_node(int data)
{
//Create a new binary tree node
Node * new_node = new Node(data);
if (new_node != NULL)
{
if (this->root == NULL)
{
//When adds a first node in binary tree
this->root = new_node;
}
else
{
Node * find = this->root;
//add new node to proper position
while (find != NULL)
{
if (find->data >= data)
{
if (find->left == NULL)
{
find->left = new_node;
break;
}
else
{
//visit left sub-tree
find = find->left;
}
}
else
{
if (find->right == NULL)
{
find->right = new_node;
break;
}
else
{
//visit right sub-tree
find = find->right;
}
}
}
}
}
else
{
cout << "Memory Overflow";
}
}
//Find and print maximum node of binary search tree
void max_node()
{
if (this->root == NULL)
{
cout << "\n Empty Tree";
}
else
{
cout << " Maximum node is : ";
Node * temp = this->root;
//Find rightmost node from to root
while (temp->right != NULL)
{
//Visit right node
temp = temp->right;
}
cout << " " << temp->data << "\n";
}
}
};
int main()
{
BinarySearchTree obj = BinarySearchTree();
//Create binary search tree
/*
5
/ \
3 6
/ \ \
-7 4 11
\ / \
2 10 18
` /
16
*/
obj.add_node(5);
obj.add_node(3);
obj.add_node(6);
obj.add_node(-7);
obj.add_node(4);
obj.add_node(11);
obj.add_node(18);
obj.add_node(2);
obj.add_node(10);
obj.add_node(16);
obj.max_node();
return 0;
}
Output
Maximum node is : 18
//Include namespace system
using System;
//C# program
//Find maximum node in binary search tree
//Binary Tree Node
class Node
{
public int data;
public Node left;
public Node right;
public Node(int data)
{
this.data = data;
this.left = null;
this.right = null;
}
}
class BinarySearchTree
{
public Node root;
//Class constructors
public BinarySearchTree()
{
root = null;
}
//insert a new node in BST
public void add_node(int data)
{
//Create a new binary tree node
Node new_node = new Node(data);
if (new_node != null)
{
if (this.root == null)
{
//When adds a first node in binary tree
this.root = new_node;
}
else
{
Node find = this.root;
//add new node to proper position
while (find != null)
{
if (find.data >= data)
{
if (find.left == null)
{
find.left = new_node;
break;
}
else
{
//visit left sub-tree
find = find.left;
}
}
else
{
if (find.right == null)
{
find.right = new_node;
break;
}
else
{
//visit right sub-tree
find = find.right;
}
}
}
}
}
else
{
Console.WriteLine("Memory Overflow");
}
}
//Find and print maximum node of binary search tree
public void max_node()
{
if (root == null)
{
Console.Write("\n Empty Tree");
}
else
{
Console.Write(" Maximum node is : ");
Node temp = root;
//Find rightmost node from to root
while (temp.right != null)
{
//Visit right node
temp = temp.right;
}
Console.Write(" " + temp.data + "\n");
}
}
public static void Main(String[] args)
{
BinarySearchTree obj = new BinarySearchTree();
//Create binary search tree
/*
5
/ \
3 6
/ \ \
-7 4 11
\ / \
2 10 18
` /
16
*/
obj.add_node(5);
obj.add_node(3);
obj.add_node(6);
obj.add_node(-7);
obj.add_node(4);
obj.add_node(11);
obj.add_node(18);
obj.add_node(2);
obj.add_node(10);
obj.add_node(16);
obj.max_node();
}
}
Output
Maximum node is : 18
<?php
//Php program
//Find maximum node in binary search tree
//Binary Tree Node
class Node
{
public $data;
public $left;
public $right;
function __construct($data)
{
$this->data = $data;
$this->left = null;
$this->right = null;
}
}
class BinarySearchTree
{
public $root;
//Class constructors
function __construct()
{
$this->root = null;
}
//insert a new node in BST
public function add_node($data)
{
//Create a new binary tree node
$new_node = new Node($data);
if ($new_node != null)
{
if ($this->root == null)
{
//When adds a first node in binary tree
$this->root = $new_node;
}
else
{
$find = $this->root;
//add new node to proper position
while ($find != null)
{
if ($find->data >= $data)
{
if ($find->left == null)
{
$find->left = $new_node;
break;
}
else
{
//visit left sub-tree
$find = $find->left;
}
}
else
{
if ($find->right == null)
{
$find->right = $new_node;
break;
}
else
{
//visit right sub-tree
$find = $find->right;
}
}
}
}
}
else
{
echo "Memory Overflow";
}
}
//Find and print maximum node of binary search tree
public function max_node()
{
if ($this->root == null)
{
echo "\n Empty Tree";
}
else
{
echo " Maximum node is : ";
$temp = $this->root;
//Find rightmost node from to root
while ($temp->right != null)
{
//Visit right node
$temp = $temp->right;
}
echo " ". $temp->data ."\n";
}
}
}
function main()
{
$obj = new BinarySearchTree();
//Create binary search tree
/*
5
/ \
3 6
/ \ \
-7 4 11
\ / \
2 10 18
` /
16
*/
$obj->add_node(5);
$obj->add_node(3);
$obj->add_node(6);
$obj->add_node(-7);
$obj->add_node(4);
$obj->add_node(11);
$obj->add_node(18);
$obj->add_node(2);
$obj->add_node(10);
$obj->add_node(16);
$obj->max_node();
}
main();
Output
Maximum node is : 18
//Node Js program
//Find maximum node in binary search tree
//Binary Tree Node
class Node
{
constructor(data)
{
this.data = data;
this.left = null;
this.right = null;
}
}
class BinarySearchTree
{
//Class constructors
constructor()
{
this.root = null;
}
//insert a new node in BST
add_node(data)
{
//Create a new binary tree node
var new_node = new Node(data);
if (new_node != null)
{
if (this.root == null)
{
//When adds a first node in binary tree
this.root = new_node;
}
else
{
var find = this.root;
//add new node to proper position
while (find != null)
{
if (find.data >= data)
{
if (find.left == null)
{
find.left = new_node;
break;
}
else
{
//visit left sub-tree
find = find.left;
}
}
else
{
if (find.right == null)
{
find.right = new_node;
break;
}
else
{
//visit right sub-tree
find = find.right;
}
}
}
}
}
else
{
process.stdout.write("Memory Overflow");
}
}
//Find and print maximum node of binary search tree
max_node()
{
if (this.root == null)
{
process.stdout.write("\n Empty Tree");
}
else
{
process.stdout.write(" Maximum node is : ");
var temp = this.root;
//Find rightmost node from to root
while (temp.right != null)
{
//Visit right node
temp = temp.right;
}
process.stdout.write(" " + temp.data + "\n");
}
}
}
function main()
{
var obj = new BinarySearchTree();
//Create binary search tree
/*
5
/ \
3 6
/ \ \
-7 4 11
\ / \
2 10 18
` /
16
*/
obj.add_node(5);
obj.add_node(3);
obj.add_node(6);
obj.add_node(-7);
obj.add_node(4);
obj.add_node(11);
obj.add_node(18);
obj.add_node(2);
obj.add_node(10);
obj.add_node(16);
obj.max_node();
}
main();
Output
Maximum node is : 18
# Python 3 program
# Find maximum node in binary search tree
# Binary Tree Node
class Node :
def __init__(self, data) :
self.data = data
self.left = None
self.right = None
class BinarySearchTree :
# Class constructors
def __init__(self) :
self.root = None
# insert a new node in BST
def add_node(self, data) :
# Create a new binary tree node
new_node = Node(data)
if (new_node != None) :
if (self.root == None) :
# When adds a first node in binary tree
self.root = new_node
else :
find = self.root
# add new node to proper position
while (find != None) :
if (find.data >= data) :
if (find.left == None) :
find.left = new_node
break
else :
# visit left sub-tree
find = find.left
else :
if (find.right == None) :
find.right = new_node
break
else :
# visit right sub-tree
find = find.right
else :
print("Memory Overflow", end = "")
# Find and print maximum node of binary search tree
def max_node(self) :
if (self.root == None) :
print("\n Empty Tree", end = "")
else :
print(" Maximum node is : ", end = "")
temp = self.root
# Find rightmost node from to root
while (temp.right != None) :
# Visit right node
temp = temp.right
print(" ", temp.data ,"\n", end = "")
def main() :
obj = BinarySearchTree()
# Create binary search tree
#
# 5
# / \
# 3 6
# / \ \
# -7 4 11
# \ / \
# 2 10 18
# ` /
# 16
#
obj.add_node(5)
obj.add_node(3)
obj.add_node(6)
obj.add_node(-7)
obj.add_node(4)
obj.add_node(11)
obj.add_node(18)
obj.add_node(2)
obj.add_node(10)
obj.add_node(16)
obj.max_node()
if __name__ == "__main__": main()
Output
Maximum node is : 18
# Ruby program
# Find maximum node in binary search tree
# Binary Tree Node
class Node
# Define the accessor and reader of class Node
attr_reader :data, :left, :right
attr_accessor :data, :left, :right
def initialize(data)
self.data = data
self.left = nil
self.right = nil
end
end
class BinarySearchTree
# Define the accessor and reader of class BinarySearchTree
attr_reader :root
attr_accessor :root
# Class constructors
def initialize()
@root = nil
end
# insert a new node in BST
def add_node(data)
# Create a new binary tree node
new_node = Node.new(data)
if (new_node != nil)
if (self.root == nil)
# When adds a first node in binary tree
self.root = new_node
else
find = self.root
# add new node to proper position
while (find != nil)
if (find.data >= data)
if (find.left == nil)
find.left = new_node
break
else
# visit left sub-tree
find = find.left
end
else
if (find.right == nil)
find.right = new_node
break
else
# visit right sub-tree
find = find.right
end
end
end
end
else
print("Memory Overflow")
end
end
# Find and print maximum node of binary search tree
def max_node()
if (@root == nil)
print("\n Empty Tree")
else
print(" Maximum node is : ")
temp = @root
# Find rightmost node from to root
while (temp.right != nil)
# Visit right node
temp = temp.right
end
print(" ", temp.data ,"\n")
end
end
end
def main()
obj = BinarySearchTree.new()
# Create binary search tree
#
# 5
# / \
# 3 6
# / \ \
# -7 4 11
# \ / \
# 2 10 18
# ` /
# 16
#
obj.add_node(5)
obj.add_node(3)
obj.add_node(6)
obj.add_node(-7)
obj.add_node(4)
obj.add_node(11)
obj.add_node(18)
obj.add_node(2)
obj.add_node(10)
obj.add_node(16)
obj.max_node()
end
main()
Output
Maximum node is : 18
//Scala program
//Find maximum node in binary search tree
//Binary Tree Node
class Node(var data: Int,
var left: Node,
var right: Node)
{
def this(data: Int)
{
this(data, null, null);
}
}
class BinarySearchTree(var root: Node)
{
//Class constructors
def this()
{
this(null);
}
//insert a new node in BST
def add_node(data: Int): Unit = {
//Create a new binary tree node
var new_node: Node = new Node(data);
if (new_node != null)
{
if (this.root == null)
{
//When adds a first node in binary tree
this.root = new_node;
}
else
{
var find: Node = this.root;
//add new node to proper position
while (find != null)
{
if (find.data >= data)
{
if (find.left == null)
{
find.left = new_node;
return;
}
else
{
//visit left sub-tree
find = find.left;
}
}
else
{
if (find.right == null)
{
find.right = new_node;
return;
}
else
{
//visit right sub-tree
find = find.right;
}
}
}
}
}
else
{
print("Memory Overflow");
}
}
//Find and print maximum node of binary search tree
def max_node(): Unit = {
if (root == null)
{
print("\n Empty Tree");
}
else
{
print(" Maximum node is : ");
var temp: Node = root;
//Find rightmost node from to root
while (temp.right != null)
{
//Visit right node
temp = temp.right;
}
print(" " + temp.data + "\n");
}
}
}
object Main
{
def main(args: Array[String]): Unit = {
var obj: BinarySearchTree = new BinarySearchTree();
//Create binary search tree
/*
5
/ \
3 6
/ \ \
-7 4 11
\ / \
2 10 18
` /
16
*/
obj.add_node(5);
obj.add_node(3);
obj.add_node(6);
obj.add_node(-7);
obj.add_node(4);
obj.add_node(11);
obj.add_node(18);
obj.add_node(2);
obj.add_node(10);
obj.add_node(16);
obj.max_node();
}
}
Output
Maximum node is : 18
//Swift program
//Find maximum node in binary search tree
//Binary Tree Node
class Node
{
var data: Int;
var left: Node? ;
var right: Node? ;
init(_ data: Int)
{
self.data = data;
self.left = nil;
self.right = nil;
}
}
class BinarySearchTree
{
var root: Node? ;
//Class constructors
init()
{
self.root = nil;
}
//insert a new node in BST
func add_node(_ data: Int)
{
//Create a new binary tree node
let new_node: Node? = Node(data);
if (new_node != nil)
{
if (self.root == nil)
{
//When adds a first node in binary tree
self.root = new_node;
}
else
{
var find: Node? = self.root;
//add new node to proper position
while (find != nil)
{
if (find!.data >= data)
{
if (find!.left == nil)
{
find!.left = new_node;
break;
}
else
{
//visit left sub-tree
find = find!.left;
}
}
else
{
if (find!.right == nil)
{
find!.right = new_node;
break;
}
else
{
//visit right sub-tree
find = find!.right;
}
}
}
}
}
else
{
print("Memory Overflow", terminator: "");
}
}
//Find and print maximum node of binary search tree
func max_node()
{
if (self.root == nil)
{
print("\n Empty Tree", terminator: "");
}
else
{
print(" Maximum node is : ", terminator: "");
var temp: Node? = self.root;
//Find rightmost node from to root
while (temp!.right != nil)
{
//Visit right node
temp = temp!.right;
}
print(" ", temp!.data ,"\n", terminator: "");
}
}
}
func main()
{
let obj: BinarySearchTree = BinarySearchTree();
//Create binary search tree
/*
5
/ \
3 6
/ \ \
-7 4 11
\ / \
2 10 18
` /
16
*/
obj.add_node(5);
obj.add_node(3);
obj.add_node(6);
obj.add_node(-7);
obj.add_node(4);
obj.add_node(11);
obj.add_node(18);
obj.add_node(2);
obj.add_node(10);
obj.add_node(16);
obj.max_node();
}
main();
Output
Maximum node is : 18
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment