Inorder Predecessor in Binary Search Tree

Here given code implementation process.
//C Program
//Inorder Predecessor in Binary Search Tree
#include <stdio.h>
#include <stdlib.h>
//structure of Binary Search Tree node
struct Node
{
int data;
struct Node *left,*right;
};
//Adding a new node in binary search tree
void add( struct Node **root, int data)
{
//Create a dynamic node of binary search tree
struct Node *new_node = (struct Node *)malloc(sizeof(struct Node ));
if(new_node!=NULL)
{
//Set data and pointer values
new_node->data = data;
new_node->left = NULL; //Initially node left-pointer is NULL
new_node->right = NULL;//Initially node right-pointer is NULL
if(*root == NULL)
{
//When adds a first node in binary tree
*root = new_node;
}
else
{
struct Node *find = *root;
//iterate binary tree and add new node to proper position
while(find != NULL)
{
if(find -> data > data)
{
if(find->left==NULL)
{
find->left = new_node;
break;
}
else
{ //visit left sub-tree
find = find->left;
}
}
else
{
if(find->right == NULL)
{
find->right = new_node;
break;
}
else
{
//visit right sub-tree
find = find->right;
}
}
}
}
}else
{
printf("Memory Overflow\n");
exit(0); //Terminate program execution
}
}
void find_element(struct Node*root,struct Node**prev,int element)
{
if(root!=NULL)
{
find_element(root->left,prev,element);
if(root->data==element)
{
if(*prev!=NULL)
{
printf("%d\n",(*prev)->data);
}
else
{
printf("NULL\n");
}
return;
}
*prev=root;
find_element(root->right,prev,element);
}
}
void inorder_predecessor(struct Node*root,int element)
{
if(root != NULL)
{
struct Node*prev=NULL;
printf(" Node %d inorder predecessor => ",element);
find_element(root,&prev,element);
printf("\n");
}
}
int main(){
struct Node*root = NULL;
//Add nodes in binary search tree
/*
6
/ \
/ \
3 9
/ \ / \
1 5 8 11
/ \ / / \
-3 2 4 7 12
*/
add(&root,6);
add(&root,3);
add(&root,9);
add(&root,1);
add(&root,5);
add(&root,8);
add(&root,11);
add(&root,-3);
add(&root,2);
add(&root,7);
add(&root,12);
add(&root,4);
inorder_predecessor(root,3);
inorder_predecessor(root,6);
inorder_predecessor(root,12);
inorder_predecessor(root,7);
return 0;
}
Output
Node 3 inorder predecessor => 2
Node 6 inorder predecessor => 5
Node 12 inorder predecessor => 11
Node 7 inorder predecessor => 6
/*
C++ Program
Inorder Predecessor in Binary Search Tree
*/
#include<iostream>
using namespace std;
class Node {
public:
int data;
Node *left;
Node *right;
Node(int value) {
this->data = value;
this->left = NULL;
this->right = NULL;
}
};
class BinarySearchTree {
public:
Node *root;
Node *result;
BinarySearchTree() {
this->root = NULL;
this->result = NULL;
}
void add(int value) {
Node *new_node = new Node(value);
if (new_node != NULL) {
if (this->root == NULL) {
this->root = new_node;
} else {
Node *find = this->root;
while (find != NULL) {
if (find->data >= value) {
if (find->left == NULL) {
find->left = new_node;
break;
} else {
find = find->left;
}
} else {
if (find->right == NULL) {
find->right = new_node;
break;
} else {
find = find->right;
}
}
}
}
} else {
cout << "\nMemory Overflow\n";
}
}
void find_element(Node *head, int element) {
if (head != NULL) {
this->find_element(head->left, element);
if (head->data == element) {
if (this->result != NULL) {
cout << this->result->data << " \n";
} else {
cout << "NULL\n";
}
return;
}
this->result = head;
this->find_element(head->right, element);
}
}
void inorder_predecessor(int element) {
if (this->root != NULL) {
this->result = NULL;
cout << "\n Node " << element << " inorder predecessor => ";
this->find_element(this->root, element);
}
}
};
int main() {
BinarySearchTree obj ;
/*
6
/ \
/ \
3 9
/ \ / \
1 5 8 11
/ \ / / \
-3 2 4 7 12
*/
obj.add(6);
obj.add(3);
obj.add(9);
obj.add(1);
obj.add(5);
obj.add(7);
obj.add(8);
obj.add(11);
obj.add(-3);
obj.add(2);
obj.add(12);
obj.add(4);
obj.inorder_predecessor(3);
obj.inorder_predecessor(6);
obj.inorder_predecessor(12);
obj.inorder_predecessor(7);
return 0;
}
Output
Node 3 inorder predecessor => 2
Node 6 inorder predecessor => 5
Node 12 inorder predecessor => 11
Node 7 inorder predecessor => 6
//Java program
//Inorder predecessor in Binary Search Tree
class Node {
public int data;
public Node left;
public Node right;
public Node(int value) {
data = value;
left = null;
right = null;
}
}
public class BinarySearchTree {
public Node root;
public Node result;
BinarySearchTree() {
root = null;
result = null;
}
//insert a node in BST
public void add(int value) {
//Create a dynamic node of binary search tree
Node new_node = new Node(value);
if (new_node != null) {
if (root == null) {
//When adds a first node in binary tree
root = new_node;
} else {
Node find = root;
//add new node to proper position
while (find != null) {
if (find.data >= value) {
if (find.left == null) {
find.left = new_node;
break;
} else {
//visit left sub-tree
find = find.left;
}
} else {
if (find.right == null) {
find.right = new_node;
break;
} else {
//visit right sub-tree
find = find.right;
}
}
}
}
} else {
System.out.print("\nMemory Overflow\n");
}
}
public void find_element(Node head,int element)
{
if(head!=null)
{
find_element(head.left,element);
if(head.data==element)
{
if(this.result!=null)
{
System.out.print(this.result.data+" \n");
}
else
{
System.out.print("null\n");
}
return;
}
this.result = head;
find_element(head.right,element);
}
}
public void inorder_predecessor(int element)
{
if(this.root != null)
{
this.result=null;
System.out.print("\n Node "+element+" inorder predecessor => ");
find_element(this.root,element);
}
}
public static void main(String[] args) {
BinarySearchTree obj = new BinarySearchTree();
//Add nodes in binary search tree
/*
6
/ \
/ \
3 9
/ \ / \
1 5 7 11
/ \ / \ \
-3 2 4 8 12
*/
obj.add(6);
obj.add(3);
obj.add(9);
obj.add(1);
obj.add(5);
obj.add(7);
obj.add(8);
obj.add(11);
obj.add(-3);
obj.add(2);
obj.add(12);
obj.add(4);
obj.inorder_predecessor(3);
obj.inorder_predecessor(6);
obj.inorder_predecessor(12);
obj.inorder_predecessor(7);
}
}
Output
Node 3 inorder predecessor => 2
Node 6 inorder predecessor => 5
Node 12 inorder predecessor => 11
Node 7 inorder predecessor => 6
//C# program
//Inorder predecessor in Binary Search Tree
using System;
public class Node {
public int data;
public Node left;
public Node right;
public Node(int value) {
data = value;
left = null;
right = null;
}
}
public class BinarySearchTree {
public Node root;
public Node result;
BinarySearchTree() {
root = null;
result = null;
}
//insert a node in BST
public void add(int value) {
//Create a dynamic node of binary search tree
Node new_node = new Node(value);
if (new_node != null) {
if (root == null) {
//When adds a first node in binary tree
root = new_node;
} else {
Node find = root;
//add new node to proper position
while (find != null) {
if (find.data >= value) {
if (find.left == null) {
find.left = new_node;
break;
} else {
//visit left sub-tree
find = find.left;
}
} else {
if (find.right == null) {
find.right = new_node;
break;
} else {
//visit right sub-tree
find = find.right;
}
}
}
}
} else {
Console.Write("\nMemory Overflow\n");
}
}
public void find_element(Node head,int element)
{
if(head!=null)
{
find_element(head.left,element);
if(head.data==element)
{
if(this.result!=null)
{
Console.Write(this.result.data+" \n");
}
else
{
Console.Write("null\n");
}
return;
}
this.result = head;
find_element(head.right,element);
}
}
public void inorder_predecessor(int element)
{
if(this.root != null)
{
this.result=null;
Console.Write("\n Node "+element+" inorder predecessor => ");
find_element(this.root,element);
}
}
public static void Main(String[] args) {
BinarySearchTree obj = new BinarySearchTree();
//Add nodes in binary search tree
/*
6
/ \
/ \
3 9
/ \ / \
1 5 7 11
/ \ / \ \
-3 2 4 8 12
*/
obj.add(6);
obj.add(3);
obj.add(9);
obj.add(1);
obj.add(5);
obj.add(7);
obj.add(8);
obj.add(11);
obj.add(-3);
obj.add(2);
obj.add(12);
obj.add(4);
obj.inorder_predecessor(3);
obj.inorder_predecessor(6);
obj.inorder_predecessor(12);
obj.inorder_predecessor(7);
}
}
Output
Node 3 inorder predecessor => 2
Node 6 inorder predecessor => 5
Node 12 inorder predecessor => 11
Node 7 inorder predecessor => 6
# Python 3 Program
# Inorder Predecessor in Binary Search Tree
class Node :
def __init__(self, value) :
self.data = value
self.left = None
self.right = None
class BinarySearchTree :
def __init__(self) :
self.root = None
self.result = None
def add(self, value) :
new_node = Node(value)
if (new_node != None) :
if (self.root == None) :
self.root = new_node
else :
find = self.root
while (find != None) :
if (find.data >= value) :
if (find.left == None) :
find.left = new_node
break
else :
find = find.left
else :
if (find.right == None) :
find.right = new_node
break
else :
find = find.right
else :
print("\nMemory Overflow\n")
def find_element(self, head, element) :
if (head != None) :
self.find_element(head.left, element)
if (head.data == element) :
if (self.result != None) :
print(self.result.data )
else :
print("null")
return
self.result = head
self.find_element(head.right, element)
def inorder_predecessor(self, element) :
if (self.root != None) :
self.result = None
print("\n Node ", element ," inorder predecessor => ",end="")
self.find_element(self.root, element)
def main() :
obj = BinarySearchTree()
#
# 6
# / \
# / \
# 3 9
# / \ / \
# 1 5 8 11
# / \ / / \
# -3 2 4 7 12
#
obj.add(6)
obj.add(3)
obj.add(9)
obj.add(1)
obj.add(5)
obj.add(7)
obj.add(8)
obj.add(11)
obj.add(-3)
obj.add(2)
obj.add(12)
obj.add(4)
obj.inorder_predecessor(3)
obj.inorder_predecessor(6)
obj.inorder_predecessor(12)
obj.inorder_predecessor(7)
if __name__ == "__main__":
main()
Output
Node 3 inorder predecessor => 2
Node 6 inorder predecessor => 5
Node 12 inorder predecessor => 11
Node 7 inorder predecessor => 6
# Ruby Program
# Inorder Predecessor in Binary Search Tree
class Node
attr_reader :data, :left, :right
attr_accessor :data, :left, :right
def initialize(value)
@data = value
@left = nil
@right = nil
end
end
class BinarySearchTree
attr_reader :root, :result
attr_accessor :root, :result
def initialize()
@root = nil
@result = nil
end
def add(value)
new_node = Node.new(value)
if (new_node != nil)
if (@root == nil)
@root = new_node
else
find = @root
while (find != nil)
if (find.data >= value)
if (find.left == nil)
find.left = new_node
break
else
find = find.left
end
else
if (find.right == nil)
find.right = new_node
break
else
find = find.right
end
end
end
end
else
print("\nMemory Overflow\n")
end
end
def find_element(head, element)
if (head != nil)
self.find_element(head.left, element)
if (head.data == element)
if (self.result != nil)
print(self.result.data ," \n")
else
print("null\n")
end
return
end
self.result = head
self.find_element(head.right, element)
end
end
def inorder_predecessor(element)
if (self.root != nil)
self.result = nil
print("\n Node ", element ," inorder predecessor => ")
self.find_element(self.root, element)
end
end
end
def main()
obj = BinarySearchTree.new()
#
# 6
# / \
# / \
# 3 9
# / \ / \
# 1 5 8 11
# / \ / / \
# -3 2 4 7 12
#
obj.add(6)
obj.add(3)
obj.add(9)
obj.add(1)
obj.add(5)
obj.add(7)
obj.add(8)
obj.add(11)
obj.add(-3)
obj.add(2)
obj.add(12)
obj.add(4)
obj.inorder_predecessor(3)
obj.inorder_predecessor(6)
obj.inorder_predecessor(12)
obj.inorder_predecessor(7)
end
main()
Output
Node 3 inorder predecessor => 2
Node 6 inorder predecessor => 5
Node 12 inorder predecessor => 11
Node 7 inorder predecessor => 6
<?php
/*
Php Program
Inorder Predecessor in Binary Search Tree
*/
class Node {
public $data;
public $left;
public $right;
function __construct($value) {
$this->data = $value;
$this->left = null;
$this->right = null;
}
}
class BinarySearchTree {
public $root;
public $result;
function __construct() {
$this->root = null;
$this->result = null;
}
public function add($value) {
$new_node = new Node($value);
if ($new_node != null) {
if ($this->root == null) {
$this->root = $new_node;
} else {
$find = $this->root;
while ($find != null) {
if ($find->data >= $value) {
if ($find->left == null) {
$find->left = $new_node;
break;
} else {
$find = $find->left;
}
} else {
if ($find->right == null) {
$find->right = $new_node;
break;
} else {
$find = $find->right;
}
}
}
}
} else {
echo("\nMemory Overflow\n");
}
}
public function find_element($head, $element) {
if ($head != null) {
$this->find_element($head->left, $element);
if ($head->data == $element) {
if ($this->result != null) {
echo($this->result->data ." \n");
} else {
echo("null\n");
}
return;
}
$this->result = $head;
$this->find_element($head->right, $element);
}
}
public function inorder_predecessor($element) {
if ($this->root != null) {
$this->result = null;
echo("\n Node ". $element ." inorder predecessor => ");
$this->find_element($this->root, $element);
}
}
}
function main() {
$obj = new BinarySearchTree();
/*
6
/ \
/ \
3 9
/ \ / \
1 5 8 11
/ \ / / \
-3 2 4 7 12
*/
$obj->add(6);
$obj->add(3);
$obj->add(9);
$obj->add(1);
$obj->add(5);
$obj->add(7);
$obj->add(8);
$obj->add(11);
$obj->add(-3);
$obj->add(2);
$obj->add(12);
$obj->add(4);
$obj->inorder_predecessor(3);
$obj->inorder_predecessor(6);
$obj->inorder_predecessor(12);
$obj->inorder_predecessor(7);
}
main();
Output
Node 3 inorder predecessor => 2
Node 6 inorder predecessor => 5
Node 12 inorder predecessor => 11
Node 7 inorder predecessor => 6
/*
Node Js Program
Inorder Predecessor in Binary Search Tree
*/
class Node {
constructor(value) {
this.data = value;
this.left = null;
this.right = null;
}
}
class BinarySearchTree {
constructor() {
this.root = null;
this.result = null;
}
add(value) {
var new_node = new Node(value);
if (new_node != null) {
if (this.root == null) {
this.root = new_node;
} else {
var find = this.root;
while (find != null) {
if (find.data >= value) {
if (find.left == null) {
find.left = new_node;
break;
} else {
find = find.left;
}
} else {
if (find.right == null) {
find.right = new_node;
break;
} else {
find = find.right;
}
}
}
}
} else {
process.stdout.write("\nMemory Overflow\n");
}
}
find_element(head, element) {
if (head != null) {
this.find_element(head.left, element);
if (head.data == element) {
if (this.result != null) {
process.stdout.write(this.result.data + " \n");
} else {
process.stdout.write("null\n");
}
return;
}
this.result = head;
this.find_element(head.right, element);
}
}
inorder_predecessor(element) {
if (this.root != null) {
this.result = null;
process.stdout.write("\n Node " + element + " inorder predecessor => ");
this.find_element(this.root, element);
}
}
}
function main() {
var obj = new BinarySearchTree();
/*
6
/ \
/ \
3 9
/ \ / \
1 5 8 11
/ \ / / \
-3 2 4 7 12
*/
obj.add(6);
obj.add(3);
obj.add(9);
obj.add(1);
obj.add(5);
obj.add(7);
obj.add(8);
obj.add(11);
obj.add(-3);
obj.add(2);
obj.add(12);
obj.add(4);
obj.inorder_predecessor(3);
obj.inorder_predecessor(6);
obj.inorder_predecessor(12);
obj.inorder_predecessor(7);
}
main();
Output
Node 3 inorder predecessor => 2
Node 6 inorder predecessor => 5
Node 12 inorder predecessor => 11
Node 7 inorder predecessor => 6
/*
Swift 4 Program
Inorder Predecessor in Binary Search Tree
*/
class Node {
var data: Int;
var left: Node? ;
var right: Node? ;
init(_ value: Int) {
self.data = value;
self.left = nil;
self.right = nil;
}
}
class BinarySearchTree {
var root: Node? ;
var result: Node? ;
init() {
self.root = nil;
self.result = nil;
}
func add(_ value: Int) {
let new_node: Node? = Node(value);
if (new_node != nil) {
if (self.root == nil) {
self.root = new_node;
} else {
var find: Node? = self.root;
while (find != nil) {
if (find!.data >= value) {
if (find!.left == nil) {
find!.left = new_node;
break;
} else {
find = find!.left;
}
} else {
if (find!.right == nil) {
find!.right = new_node;
break;
} else {
find = find!.right;
}
}
}
}
} else {
print("\nMemory Overflow\n");
}
}
func find_element(_ head: Node? , _ element : Int) {
if (head != nil) {
self.find_element(head!.left, element);
if (head!.data == element) {
if (self.result != nil) {
print(self.result!.data );
} else {
print("null");
}
return;
}
self.result = head;
self.find_element(head!.right, element);
}
}
func inorder_predecessor(_ element: Int) {
if (self.root != nil) {
self.result = nil;
print("\n Node ", element ," inorder predecessor => ", terminator:" ");
self.find_element(self.root, element);
}
}
}
func main() {
let obj: BinarySearchTree = BinarySearchTree();
/*
6
/ \
/ \
3 9
/ \ / \
1 5 8 11
/ \ / / \
-3 2 4 7 12
*/
obj.add(6);
obj.add(3);
obj.add(9);
obj.add(1);
obj.add(5);
obj.add(7);
obj.add(8);
obj.add(11);
obj.add(-3);
obj.add(2);
obj.add(12);
obj.add(4);
obj.inorder_predecessor(3);
obj.inorder_predecessor(6);
obj.inorder_predecessor(12);
obj.inorder_predecessor(7);
}
main();
Output
Node 3 inorder predecessor => 2
Node 6 inorder predecessor => 5
Node 12 inorder predecessor => 11
Node 7 inorder predecessor => 6
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment