Count BST nodes that lie in a given range

Here given code implementation process.
//C Program
//Count BST nodes that lie in a given range
#include <stdio.h>
#include <stdlib.h>
//structure of Binary Search Tree node
struct Node
{
int data;
struct Node *left,*right;
};
//Adding a new node in binary search tree
void add( struct Node **root, int data)
{
//Create a dynamic node of binary search tree
struct Node *new_node = (struct Node *)malloc(sizeof(struct Node ));
if(new_node!=NULL)
{
//Set data and pointer values
new_node->data = data;
new_node->left = NULL; //Initially node left-pointer is NULL
new_node->right = NULL;//Initially node right-pointer is NULL
if(*root == NULL)
{
//When adds a first node in binary tree
*root = new_node;
}
else
{
struct Node *find = *root;
//iterate binary tree and add new node to proper position
while(find != NULL)
{
if(find -> data > data)
{
if(find->left==NULL)
{
find->left = new_node;
break;
}
else
{ //visit left sub-tree
find = find->left;
}
}
else
{
if(find->right == NULL)
{
find->right = new_node;
break;
}
else
{
//visit right sub-tree
find = find->right;
}
}
}
}
}else
{
printf("Memory Overflow\n");
exit(0); //Terminate program execution
}
}
void count_element(struct Node*root,
int *counter,int first,int second)
{
if(root!=NULL)
{
if(root->data >= first && root->data <=second)
{
(*counter)++;
}
count_element(root->left,counter,first,second);
count_element(root->right,counter,first,second);
}
}
void counter_nodes(struct Node*root,int first,int second)
{
if(root != NULL)
{
int counter=0;
if(first < second)
{
count_element(root,&counter,first,second);
}
else
{
count_element(root,&counter,second,first);
}
printf("[%d,%d] => %d\n",first,second,counter );
}
else
{
printf("Empty BST\n");
}
}
int main(){
struct Node*root = NULL;
//Add nodes in binary search tree
/*
6
/ \
/ \
3 9
/ \ / \
1 5 7 11
/ \ / \
-3 2 4 12
*/
add(&root,6);
add(&root,3);
add(&root,9);
add(&root,1);
add(&root,5);
add(&root,7);
add(&root,11);
add(&root,-3);
add(&root,2);
add(&root,12);
add(&root,4);
counter_nodes(root,1,10);
return 0;
}
Output
[1,10] => 8
/*
C++ Program
Count BST nodes that lie in a given range
*/
#include<iostream>
using namespace std;
class Node {
public:
int data;
Node *left;
Node *right;
Node(int value) {
this->data = value;
this->left = NULL;
this->right = NULL;
}
};
class BinarySearchTree {
public:
Node *root;
int counter;
BinarySearchTree() {
this->root = NULL;
this->counter = 0;
}
void add(int value) {
Node *new_node = new Node(value);
if (new_node != NULL) {
if (this->root == NULL) {
this->root = new_node;
} else {
Node *find = this->root;
while (find != NULL) {
if (find->data >= value) {
if (find->left == NULL) {
find->left = new_node;
break;
} else {
find = find->left;
}
} else {
if (find->right == NULL) {
find->right = new_node;
break;
} else {
find = find->right;
}
}
}
}
} else {
cout << "\nMemory Overflow\n";
}
}
void count_element(Node *head, int first, int second) {
if (head != NULL) {
if (head->data >= first && head->data <= second) {
this->counter++;
}
this->count_element(head->left, first, second);
this->count_element(head->right, first, second);
}
}
void counter_nodes(int first, int second) {
if (this->root != NULL) {
this->counter = 0;
if (first < second) {
this->count_element(this->root, first, second);
} else {
this->count_element(this->root, second, first);
}
cout << "[" << first << "," << second << "] => " << this->counter << "\n";
} else {
cout << "\nEmpty BST\n";
}
}
};
int main() {
BinarySearchTree obj;
/*
6
/ \
/ \
3 9
/ \ / \
1 5 7 11
/ \ / \
-3 2 4 12
*/
obj.add(6);
obj.add(3);
obj.add(9);
obj.add(1);
obj.add(5);
obj.add(7);
obj.add(11);
obj.add(-3);
obj.add(2);
obj.add(12);
obj.add(4);
obj.counter_nodes(1, 10);
return 0;
}
Output
[1,10] => 8
//Java program
//Count BST nodes that lie in a given range
class Node {
public int data;
public Node left;
public Node right;
public Node(int value) {
data = value;
left = null;
right = null;
}
}
public class BinarySearchTree {
public Node root;
public int counter;
BinarySearchTree() {
root = null;
counter = 0;
}
//insert a node in BST
public void add(int value) {
//Create a dynamic node of binary search tree
Node new_node = new Node(value);
if (new_node != null) {
if (root == null) {
//When adds a first node in binary tree
root = new_node;
} else {
Node find = root;
//add new node to proper position
while (find != null) {
if (find.data >= value) {
if (find.left == null) {
find.left = new_node;
break;
} else {
//visit left sub-tree
find = find.left;
}
} else {
if (find.right == null) {
find.right = new_node;
break;
} else {
//visit right sub-tree
find = find.right;
}
}
}
}
} else {
System.out.print("\nMemory Overflow\n");
}
}
public void count_element(Node head,
int first,int second)
{
if(head!=null)
{
if(head.data >= first && head.data <=second)
{
this.counter++;
}
count_element(head.left,first,second);
count_element(head.right,first,second);
}
}
public void counter_nodes(int first,int second)
{
if(root != null)
{
this.counter=0;
if(first < second)
{
count_element(root,first,second);
}
else
{
count_element(root,second,first);
}
System.out.print("["+first+","+second+"] => "+this.counter+"\n" );
}
else
{
System.out.print("\nEmpty BST\n");
}
}
public static void main(String[] args) {
BinarySearchTree obj = new BinarySearchTree();
//Add nodes in binary search tree
/*
6
/ \
/ \
3 9
/ \ / \
1 5 7 11
/ \ / \
-3 2 4 12
*/
obj.add(6);
obj.add(3);
obj.add(9);
obj.add(1);
obj.add(5);
obj.add(7);
obj.add(11);
obj.add(-3);
obj.add(2);
obj.add(12);
obj.add(4);
obj.counter_nodes(1,10);
}
}
Output
[1,10] => 8
//C# program
//Count BST nodes that lie in a given range
using System;
public class Node {
public int data;
public Node left;
public Node right;
public Node(int value) {
data = value;
left = null;
right = null;
}
}
public class BinarySearchTree {
public Node root;
public int counter;
BinarySearchTree() {
root = null;
counter = 0;
}
//insert a node in BST
public void add(int value) {
//Create a dynamic node of binary search tree
Node new_node = new Node(value);
if (new_node != null) {
if (root == null) {
//When adds a first node in binary tree
root = new_node;
} else {
Node find = root;
//add new node to proper position
while (find != null) {
if (find.data >= value) {
if (find.left == null) {
find.left = new_node;
break;
} else {
//visit left sub-tree
find = find.left;
}
} else {
if (find.right == null) {
find.right = new_node;
break;
} else {
//visit right sub-tree
find = find.right;
}
}
}
}
} else {
Console.Write("\nMemory Overflow\n");
}
}
public void count_element(Node head,
int first,int second)
{
if(head!=null)
{
if(head.data >= first && head.data <=second)
{
this.counter++;
}
count_element(head.left,first,second);
count_element(head.right,first,second);
}
}
public void counter_nodes(int first,int second)
{
if(root != null)
{
this.counter=0;
if(first < second)
{
count_element(root,first,second);
}
else
{
count_element(root,second,first);
}
Console.Write("["+first+","+second+"] => "+this.counter+"\n" );
}
else
{
Console.Write("\nEmpty BST\n");
}
}
public static void Main(String[] args) {
BinarySearchTree obj = new BinarySearchTree();
//Add nodes in binary search tree
/*
6
/ \
/ \
3 9
/ \ / \
1 5 7 11
/ \ / \
-3 2 4 12
*/
obj.add(6);
obj.add(3);
obj.add(9);
obj.add(1);
obj.add(5);
obj.add(7);
obj.add(11);
obj.add(-3);
obj.add(2);
obj.add(12);
obj.add(4);
obj.counter_nodes(1,10);
}
}
Output
[1,10] => 8
# Python 3 Program
# Count BST nodes that lie in a given range
class Node :
def __init__(self, value) :
self.data = value
self.left = None
self.right = None
class BinarySearchTree :
def __init__(self) :
self.root = None
self.counter = 0
def add(self, value) :
new_node = Node(value)
if (new_node != None) :
if (self.root == None) :
self.root = new_node
else :
find = self.root
while (find != None) :
if (find.data >= value) :
if (find.left == None) :
find.left = new_node
break
else :
find = find.left
else :
if (find.right == None) :
find.right = new_node
break
else :
find = find.right
else :
print("\nMemory Overflow\n")
def count_element(self, head, first, second) :
if (head != None) :
if (head.data >= first and head.data <= second) :
self.counter += 1
self.count_element(head.left, first, second)
self.count_element(head.right, first, second)
def counter_nodes(self, first, second) :
if (self.root != None) :
self.counter = 0
if (first < second) :
self.count_element(self.root, first, second)
else :
self.count_element(self.root, second, first)
print("[", first ,",", second ,"] => ", self.counter)
else :
print("\nEmpty BST\n")
def main() :
obj = BinarySearchTree()
#
# 6
# / \
# / \
# 3 9
# / \ / \
# 1 5 7 11
# / \ / \
# -3 2 4 12
#
obj.add(6)
obj.add(3)
obj.add(9)
obj.add(1)
obj.add(5)
obj.add(7)
obj.add(11)
obj.add(-3)
obj.add(2)
obj.add(12)
obj.add(4)
obj.counter_nodes(1, 10)
if __name__ == "__main__":
main()
Output
[1,10] => 8
# Ruby Program
# Count BST nodes that lie in a given range
class Node
attr_reader :data, :left, :right
attr_accessor :data, :left, :right
def initialize(value)
@data = value
@left = nil
@right = nil
end
end
class BinarySearchTree
attr_reader :root, :counter
attr_accessor :root, :counter
def initialize()
@root = nil
@counter = 0
end
def add(value)
new_node = Node.new(value)
if (new_node != nil)
if (@root == nil)
@root = new_node
else
find = @root
while (find != nil)
if (find.data >= value)
if (find.left == nil)
find.left = new_node
break
else
find = find.left
end
else
if (find.right == nil)
find.right = new_node
break
else
find = find.right
end
end
end
end
else
print("\nMemory Overflow\n")
end
end
def count_element(head, first, second)
if (head != nil)
if (head.data >= first and head.data <= second)
self.counter += 1
end
self.count_element(head.left, first, second)
self.count_element(head.right, first, second)
end
end
def counter_nodes(first, second)
if (@root != nil)
self.counter = 0
if (first < second)
self.count_element(@root, first, second)
else
self.count_element(@root, second, first)
end
print("[", first ,",", second ,"] => ", self.counter ,"\n")
else
print("\nEmpty BST\n")
end
end
end
def main()
obj = BinarySearchTree.new()
#
# 6
# / \
# / \
# 3 9
# / \ / \
# 1 5 7 11
# / \ / \
# -3 2 4 12
#
obj.add(6)
obj.add(3)
obj.add(9)
obj.add(1)
obj.add(5)
obj.add(7)
obj.add(11)
obj.add(-3)
obj.add(2)
obj.add(12)
obj.add(4)
obj.counter_nodes(1, 10)
end
main()
Output
[1,10] => 8
<?php
/*
Php Program
Count BST nodes that lie in a given range
*/
class Node {
public $data;
public $left;
public $right;
function __construct($value) {
$this->data = $value;
$this->left = null;
$this->right = null;
}
}
class BinarySearchTree {
public $root;
public $counter;
function __construct() {
$this->root = null;
$this->counter = 0;
}
public function add($value) {
$new_node = new Node($value);
if ($new_node != null) {
if ($this->root == null) {
$this->root = $new_node;
} else {
$find = $this->root;
while ($find != null) {
if ($find->data >= $value) {
if ($find->left == null) {
$find->left = $new_node;
break;
} else {
$find = $find->left;
}
} else {
if ($find->right == null) {
$find->right = $new_node;
break;
} else {
$find = $find->right;
}
}
}
}
} else {
echo("\nMemory Overflow\n");
}
}
public function count_element($head, $first, $second) {
if ($head != null) {
if ($head->data >= $first && $head->data <= $second) {
$this->counter++;
}
$this->count_element($head->left, $first, $second);
$this->count_element($head->right, $first, $second);
}
}
public function counter_nodes($first, $second) {
if ($this->root != null) {
$this->counter = 0;
if ($first < $second) {
$this->count_element($this->root, $first, $second);
} else {
$this->count_element($this->root, $second, $first);
}
echo("[". $first .",". $second ."] => ". $this->counter ."\n");
} else {
echo("\nEmpty BST\n");
}
}
}
function main() {
$obj = new BinarySearchTree();
/*
6
/ \
/ \
3 9
/ \ / \
1 5 7 11
/ \ / \
-3 2 4 12
*/
$obj->add(6);
$obj->add(3);
$obj->add(9);
$obj->add(1);
$obj->add(5);
$obj->add(7);
$obj->add(11);
$obj->add(-3);
$obj->add(2);
$obj->add(12);
$obj->add(4);
$obj->counter_nodes(1, 10);
}
main();
Output
[1,10] => 8
/*
Node Js Program
Count BST nodes that lie in a given range
*/
class Node {
constructor(value) {
this.data = value;
this.left = null;
this.right = null;
}
}
class BinarySearchTree {
constructor() {
this.root = null;
this.counter = 0;
}
add(value) {
var new_node = new Node(value);
if (new_node != null) {
if (this.root == null) {
this.root = new_node;
} else {
var find = this.root;
while (find != null) {
if (find.data >= value) {
if (find.left == null) {
find.left = new_node;
break;
} else {
find = find.left;
}
} else {
if (find.right == null) {
find.right = new_node;
break;
} else {
find = find.right;
}
}
}
}
} else {
process.stdout.write("\nMemory Overflow\n");
}
}
count_element(head, first, second) {
if (head != null) {
if (head.data >= first && head.data <= second) {
this.counter++;
}
this.count_element(head.left, first, second);
this.count_element(head.right, first, second);
}
}
counter_nodes(first, second) {
if (this.root != null) {
this.counter = 0;
if (first < second) {
this.count_element(this.root, first, second);
} else {
this.count_element(this.root, second, first);
}
process.stdout.write("[" + first + "," + second + "] => " + this.counter + "\n");
} else {
process.stdout.write("\nEmpty BST\n");
}
}
}
function main() {
var obj = new BinarySearchTree();
/*
6
/ \
/ \
3 9
/ \ / \
1 5 7 11
/ \ / \
-3 2 4 12
*/
obj.add(6);
obj.add(3);
obj.add(9);
obj.add(1);
obj.add(5);
obj.add(7);
obj.add(11);
obj.add(-3);
obj.add(2);
obj.add(12);
obj.add(4);
obj.counter_nodes(1, 10);
}
main();
Output
[1,10] => 8
/*
Swift 4 Program
Count BST nodes that lie in a given range
*/
class Node {
var data: Int;
var left: Node? ;
var right: Node? ;
init(_ value: Int) {
self.data = value;
self.left = nil;
self.right = nil;
}
}
class BinarySearchTree {
var root: Node? ;
var counter: Int;
init() {
self.root = nil;
self.counter = 0;
}
func add(_ value: Int) {
let new_node: Node? = Node(value);
if (new_node != nil) {
if (self.root == nil) {
self.root = new_node;
} else {
var find: Node? = self.root;
while (find != nil) {
if (find!.data >= value) {
if (find!.left == nil) {
find!.left = new_node;
break;
} else {
find = find!.left;
}
} else {
if (find!.right == nil) {
find!.right = new_node;
break;
} else {
find = find!.right;
}
}
}
}
} else {
print("\nMemory Overflow\n");
}
}
func count_element(_ head: Node? , _ first : Int, _ second: Int) {
if (head != nil) {
if (head!.data >= first && head!.data <= second) {
self.counter += 1;
}
self.count_element(head!.left, first, second);
self.count_element(head!.right, first, second);
}
}
func counter_nodes(_ first: Int, _ second: Int) {
if (self.root != nil) {
self.counter = 0;
if (first < second) {
self.count_element(self.root, first, second);
} else {
self.count_element(self.root, second, first);
}
print("[", first ,",", second ,"] => ", self.counter ,"\n");
} else {
print("\nEmpty BST\n");
}
}
}
func main() {
let obj: BinarySearchTree = BinarySearchTree();
/*
6
/ \
/ \
3 9
/ \ / \
1 5 7 11
/ \ / \
-3 2 4 12
*/
obj.add(6);
obj.add(3);
obj.add(9);
obj.add(1);
obj.add(5);
obj.add(7);
obj.add(11);
obj.add(-3);
obj.add(2);
obj.add(12);
obj.add(4);
obj.counter_nodes(1, 10);
}
main();
Output
[1,10] => 8
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment