Convert a binary tree to Max Heap

Here given code implementation process.
/*
C Program
+ Convert a binary tree to Max Heap
*/
#include <stdio.h>
#include <stdlib.h>
//structure of Binary Tree node
struct Node{
int data;
struct Node*left,*right;
};
//Create a binary tree nodes and node fields (data,pointer)
//And returning the reference of newly nodes
struct Node* insert(int data)
{
//create dynamic memory to new binary tree node
struct Node*new_node=(struct Node*)malloc(sizeof(struct Node));
if(new_node!=NULL)
{
//set data and pointer values
new_node->data=data;
new_node->left=NULL; //Initially node left-pointer is NULL
new_node->right=NULL;//Initially node right-pointer is NULL
}else
{
printf("Memory Overflow\n");
exit(0); //Terminate program execution
}
//return reference
return new_node;
}
//Display tree element inorder form
void inorderData(struct Node* node)
{
if(node!=NULL)
{
inorderData(node->left);
//Print node value
printf("%3d",node->data);
inorderData(node->right);
}
}
//Display tree element preorder form
void preOrderData(struct Node* node)
{
if(node!=NULL)
{
//Print node value
printf("%3d",node->data);
preOrderData(node->left);
preOrderData(node->right);
}
}
//Display tree element postorder form
void postOrderData(struct Node* node)
{
if(node!=NULL)
{
postOrderData(node->left);
postOrderData(node->right);
//Print node value
printf("%3d",node->data);
}
}
void swap(struct Node*first,struct Node*second)
{
int temp=first->data;
first->data=second->data;
second->data=temp;
}
//convert a binary tree to Max Heap
void maxHeap(struct Node*root)
{
if(root==NULL) return;
maxHeap(root->left);
maxHeap(root->right);
if(root->left != NULL && root->left->data > root->data)
{
//swap node value
swap(root,root->left);
//check min head after swap
maxHeap(root);
}
if(root->right != NULL && root->right->data > root->data)
{
//swap node value
swap(root,root->right);
//check min head after swap
maxHeap(root);
}
}
int main(){
struct Node*root=NULL;
/* Make A Binary Tree
-----------------------
5
/ \
4 7
/ / \
3 6 10
\ \
9 8
*/
//Insertion of binary tree nodes
root =insert(5);
root->left =insert(4);
root->right =insert(7);
root->right->right =insert(10);
root->right->left =insert(6);
root->left->left =insert(3);
root->right->left->right =insert(8);
root->left->left->right =insert(9);
//Display Tree elements
printf("\n Before convert");
printf("\n Inorder Data : ");
inorderData(root);
printf("\n Preorder Data : ");
preOrderData(root);
printf("\n Postorder Data : ");
postOrderData(root);
//Convert
maxHeap(root);
/* After convert
-----------------------
10
/ \
5 9
/ / \
4 7 8
\ \
3 6
*/
printf("\n\n After convert");
printf("\n Inorder Data : ");
inorderData(root);
printf("\n Preorder Data : ");
preOrderData(root);
printf("\n Postorder Data : ");
postOrderData(root);
return 0;
}
Output
Before convert
Inorder Data : 3 9 4 5 6 8 7 10
Preorder Data : 5 4 3 9 7 6 8 10
Postorder Data : 9 3 4 8 6 10 7 5
After convert
Inorder Data : 4 3 5 10 7 6 9 8
Preorder Data : 10 5 4 3 9 7 6 8
Postorder Data : 3 4 5 6 7 8 9 10
/*
C++ Program
Convert a binary tree to Max Heap
*/
#include<iostream>
using namespace std;
class Node {
public:
int data;
Node *left, *right;
Node(int value) {
this->data = value;
this->left = this->right = NULL;
}
};
class BinaryTree {
public:
Node *root;
BinaryTree() {
this->root = NULL;
}
void in_order(Node *node) {
if (node != NULL) {
this->in_order(node->left);
cout << " " << node->data;
this->in_order(node->right);
}
}
void pre_order(Node *node) {
if (node != NULL) {
cout << " " << node->data;
this->pre_order(node->left);
this->pre_order(node->right);
}
}
void post_order(Node *node) {
if (node != NULL) {
this->post_order(node->left);
this->post_order(node->right);
cout << " " << node->data;
}
}
void swap(Node *first, Node *second) {
int value = first->data;
first->data = second->data;
second->data = value;
}
void maxHeap(Node *head) {
if (head == NULL)
return;
this->maxHeap(head->left);
this->maxHeap(head->right);
if (head->left != NULL && head->left->data > head->data) {
this->swap(head, head->left);
this->maxHeap(head);
}
if (head->right != NULL && head->right->data > head->data) {
this->swap(head, head->right);
this->maxHeap(head);
}
}
};
int main() {
BinaryTree obj;
/* Make Binary Tree
-----------------------
5
/ \
4 7
/ / \
3 6 10
\ \
9 8
*/
obj.root = new Node(5);
obj.root->left = new Node(4);
obj.root->right = new Node(7);
obj.root->right->right = new Node(10);
obj.root->right->left = new Node(6);
obj.root->left->left = new Node(3);
obj.root->right->left->right = new Node(8);
obj.root->left->left->right = new Node(9);
cout << ("\nBefore Convert ");
cout << ("\nIn-order Data : ");
obj.in_order(obj.root);
cout << ("\nPre-order Data : ");
obj.pre_order(obj.root);
cout << ("\nPost-order Data : ");
obj.post_order(obj.root);
obj.maxHeap(obj.root);
cout << ("\nAfter Convert ");
cout << ("\nIn-order Data : ");
obj.in_order(obj.root);
cout << ("\nPre-order Data : ");
obj.pre_order(obj.root);
cout << ("\nPost-order Data : ");
obj.post_order(obj.root);
return 0;
}
Output
Before Convert
In-order Data : 3 9 4 5 6 8 7 10
Pre-order Data : 5 4 3 9 7 6 8 10
Post-order Data : 9 3 4 8 6 10 7 5
After Convert
In-order Data : 4 3 5 10 7 6 9 8
Pre-order Data : 10 5 4 3 9 7 6 8
Post-order Data : 3 4 5 6 7 8 9 10
/*
Java Program
Convert a binary tree to Max Heap
*/
//Class of Binary Tree node
class Node {
public int data;
public Node left, right;
//Make a tree node
public Node(int value) {
//Assign field values
data = value;
left = right = null;
}
}
public class BinaryTree {
public Node root;
public BinaryTree() {
//Set initial value
root = null;
}
//Display tree element inorder form
public void in_order(Node node) {
if (node != null) {
in_order(node.left);
//Print node value
System.out.print(" " + node.data);
in_order(node.right);
}
}
//Display tree element preorder form
public void pre_order(Node node) {
if (node != null) {
//Print node value
System.out.print(" " + node.data);
pre_order(node.left);
pre_order(node.right);
}
}
//Display tree element preorder form
public void post_order(Node node) {
if (node != null) {
post_order(node.left);
post_order(node.right);
//Print node value
System.out.print(" " + node.data);
}
}
public void swap(Node first, Node second) {
int value = first.data;
first.data = second.data;
second.data = value;
}
//convert a binary tree to Max Heap
public void maxHeap(Node head) {
if (head == null) return;
maxHeap(head.left);
maxHeap(head.right);
if (head.left != null && head.left.data > head.data) {
//swap node value
swap(head, head.left);
//check min head after swap
maxHeap(head);
}
if (head.right != null && head.right.data > head.data) {
//swap node value
swap(head, head.right);
//check min head after swap
maxHeap(head);
}
}
public static void main(String[] args) {
//Make object of Binary Tree
BinaryTree obj = new BinaryTree();
/* Make A Binary Tree
-----------------------
5
/ \
4 7
/ / \
3 6 10
\ \
9 8
*/
//binary tree nodes
obj.root = new Node(5);
obj.root.left = new Node(4);
obj.root.right = new Node(7);
obj.root.right.right = new Node(10);
obj.root.right.left = new Node(6);
obj.root.left.left = new Node(3);
obj.root.right.left.right = new Node(8);
obj.root.left.left.right = new Node(9);
System.out.print("\nBefore Convert ");
System.out.print("\nIn-order Data : ");
obj.in_order(obj.root);
System.out.print("\nPre-order Data : ");
obj.pre_order(obj.root);
System.out.print("\nPost-order Data : ");
obj.post_order(obj.root);
//Convert
obj.maxHeap(obj.root);
/*After convert
-----------------------
10
/ \
5 9
/ / \
4 7 8
\ \
3 6
*/
System.out.print("\nAfter Convert ");
System.out.print("\nIn-order Data : ");
obj.in_order(obj.root);
System.out.print("\nPre-order Data : ");
obj.pre_order(obj.root);
System.out.print("\nPost-order Data : ");
obj.post_order(obj.root);
}
}
Output
Before Convert
In-order Data : 3 9 4 5 6 8 7 10
Pre-order Data : 5 4 3 9 7 6 8 10
Post-order Data : 9 3 4 8 6 10 7 5
After Convert
In-order Data : 4 3 5 10 7 6 9 8
Pre-order Data : 10 5 4 3 9 7 6 8
Post-order Data : 3 4 5 6 7 8 9 10
/*
C# Program
Convert a binary tree to Max Heap
*/
using System;
//Class of Binary Tree node
public class Node {
public int data;
public Node left, right;
//Make a tree node
public Node(int value) {
//Assign field values
data = value;
left = right = null;
}
}
public class BinaryTree {
public Node root;
public BinaryTree() {
//Set initial value
root = null;
}
//Display tree element inorder form
public void in_order(Node node) {
if (node != null) {
in_order(node.left);
//Print node value
Console.Write(" " + node.data);
in_order(node.right);
}
}
//Display tree element preorder form
public void pre_order(Node node) {
if (node != null) {
//Print node value
Console.Write(" " + node.data);
pre_order(node.left);
pre_order(node.right);
}
}
//Display tree element preorder form
public void post_order(Node node) {
if (node != null) {
post_order(node.left);
post_order(node.right);
//Print node value
Console.Write(" " + node.data);
}
}
public void swap(Node first, Node second) {
int value = first.data;
first.data = second.data;
second.data = value;
}
//convert a binary tree to Max Heap
public void maxHeap(Node head) {
if (head == null) return;
maxHeap(head.left);
maxHeap(head.right);
if (head.left != null && head.left.data > head.data) {
//swap node value
swap(head, head.left);
//check min head after swap
maxHeap(head);
}
if (head.right != null && head.right.data > head.data) {
//swap node value
swap(head, head.right);
//check min head after swap
maxHeap(head);
}
}
public static void Main(String[] args) {
//Make object of Binary Tree
BinaryTree obj = new BinaryTree();
/* Make A Binary Tree
-----------------------
5
/ \
4 7
/ / \
3 6 10
\ \
9 8
*/
//binary tree nodes
obj.root = new Node(5);
obj.root.left = new Node(4);
obj.root.right = new Node(7);
obj.root.right.right = new Node(10);
obj.root.right.left = new Node(6);
obj.root.left.left = new Node(3);
obj.root.right.left.right = new Node(8);
obj.root.left.left.right = new Node(9);
Console.Write("\nBefore Convert ");
Console.Write("\nIn-order Data : ");
obj.in_order(obj.root);
Console.Write("\nPre-order Data : ");
obj.pre_order(obj.root);
Console.Write("\nPost-order Data : ");
obj.post_order(obj.root);
//Convert
obj.maxHeap(obj.root);
/*After convert
-----------------------
10
/ \
5 9
/ / \
4 7 8
\ \
3 6
*/
Console.Write("\nAfter Convert ");
Console.Write("\nIn-order Data : ");
obj.in_order(obj.root);
Console.Write("\nPre-order Data : ");
obj.pre_order(obj.root);
Console.Write("\nPost-order Data : ");
obj.post_order(obj.root);
}
}
Output
Before Convert
In-order Data : 3 9 4 5 6 8 7 10
Pre-order Data : 5 4 3 9 7 6 8 10
Post-order Data : 9 3 4 8 6 10 7 5
After Convert
In-order Data : 4 3 5 10 7 6 9 8
Pre-order Data : 10 5 4 3 9 7 6 8
Post-order Data : 3 4 5 6 7 8 9 10
# Python Program
# Convert a binary tree to Max Heap
class Node :
def __init__(self, value) :
self.data = value
self.left = self.right = None
class BinaryTree :
def __init__(self) :
self.root = None
def in_order(self, node) :
if (node != None) :
self.in_order(node.left)
print(node.data, end=" ")
self.in_order(node.right)
def pre_order(self, node) :
if (node != None) :
print(node.data, end=" ")
self.pre_order(node.left)
self.pre_order(node.right)
def post_order(self, node) :
if (node != None) :
self.post_order(node.left)
self.post_order(node.right)
print(node.data, end=" ")
def swap(self, first, second) :
value = first.data
first.data = second.data
second.data = value
def maxHeap(self, head) :
if (head == None):
return
self.maxHeap(head.left)
self.maxHeap(head.right)
if (head.left != None and head.left.data > head.data) :
self.swap(head, head.left)
self.maxHeap(head)
if (head.right != None and head.right.data > head.data) :
self.swap(head, head.right)
self.maxHeap(head)
def main() :
obj = BinaryTree()
# Make A Binary Tree
#
# 5
# / \
# 4 7
# / / \
# 3 6 10
# \ \
# 9 8
#
obj.root = Node(5)
obj.root.left = Node(4)
obj.root.right = Node(7)
obj.root.right.right = Node(10)
obj.root.right.left = Node(6)
obj.root.left.left = Node(3)
obj.root.right.left.right = Node(8)
obj.root.left.left.right = Node(9)
print("\nBefore Convert ")
print("In-order Data : ")
obj.in_order(obj.root)
print("\nPre-order Data : ")
obj.pre_order(obj.root)
print("\nPost-order Data : ")
obj.post_order(obj.root)
obj.maxHeap(obj.root)
print("\nAfter Convert ")
print("In-order Data : ")
obj.in_order(obj.root)
print("\nPre-order Data : ")
obj.pre_order(obj.root)
print("\nPost-order Data : ")
obj.post_order(obj.root)
if __name__ == "__main__":
main()
Output
Before Convert
In-order Data :
3 9 4 5 6 8 7 10
Pre-order Data :
5 4 3 9 7 6 8 10
Post-order Data :
9 3 4 8 6 10 7 5
After Convert
In-order Data :
4 3 5 10 7 6 9 8
Pre-order Data :
10 5 4 3 9 7 6 8
Post-order Data :
3 4 5 6 7 8 9 10
# Ruby Program
# Convert a binary tree to Max Heap
class Node
attr_reader :data, :left, :right
attr_accessor :data, :left, :right
def initialize(value)
@data = value
@left = nil
@right = nil
end
end
class BinaryTree
attr_reader :root
attr_accessor :root
def initialize()
@root = nil
end
def in_order(node)
if (node != nil)
self.in_order(node.left)
print(" ", node.data)
self.in_order(node.right)
end
end
def pre_order(node)
if (node != nil)
print(" ", node.data)
self.pre_order(node.left)
self.pre_order(node.right)
end
end
def post_order(node)
if (node != nil)
self.post_order(node.left)
self.post_order(node.right)
print(" ", node.data)
end
end
def swap(first, second)
value = first.data
first.data = second.data
second.data = value
end
def maxHeap(head)
if (head == nil)
return
end
self.maxHeap(head.left)
self.maxHeap(head.right)
if (head.left != nil and head.left.data > head.data)
self.swap(head, head.left)
self.maxHeap(head)
end
if (head.right != nil and head.right.data > head.data)
self.swap(head, head.right)
self.maxHeap(head)
end
end
end
def main()
obj = BinaryTree.new()
# Make A Binary Tree
#
# 5
# / \
# 4 7
# / / \
# 3 6 10
# \ \
# 9 8
#
obj.root = Node.new(5)
obj.root.left = Node.new(4)
obj.root.right = Node.new(7)
obj.root.right.right = Node.new(10)
obj.root.right.left = Node.new(6)
obj.root.left.left = Node.new(3)
obj.root.right.left.right = Node.new(8)
obj.root.left.left.right = Node.new(9)
print("\nBefore Convert ")
print("\nIn-order Data :")
obj.in_order(obj.root)
print("\nPre-order Data :")
obj.pre_order(obj.root)
print("\nPost-order Data :")
obj.post_order(obj.root)
obj.maxHeap(obj.root)
print("\nAfter Convert ")
print("\nIn-order Data :")
obj.in_order(obj.root)
print("\nPre-order Data :")
obj.pre_order(obj.root)
print("\nPost-order Data :")
obj.post_order(obj.root)
end
main()
Output
Before Convert
In-order Data : 3 9 4 5 6 8 7 10
Pre-order Data : 5 4 3 9 7 6 8 10
Post-order Data : 9 3 4 8 6 10 7 5
After Convert
In-order Data : 4 3 5 10 7 6 9 8
Pre-order Data : 10 5 4 3 9 7 6 8
Post-order Data : 3 4 5 6 7 8 9 10
<?php
/*
Php Program
Convert a binary tree to Max Heap
*/
class Node {
public $data;
public $left;
public $right;
function __construct($value) {
$this->data = $value;
$this->left = null;
$this->right = null;
}
}
class BinaryTree {
public $root;
function __construct() {
$this->root = null;
}
public function in_order($node) {
if ($node != null) {
$this->in_order($node->left);
echo(" ". $node->data);
$this->in_order($node->right);
}
}
public function pre_order($node) {
if ($node != null) {
echo(" ". $node->data);
$this->pre_order($node->left);
$this->pre_order($node->right);
}
}
public function post_order($node) {
if ($node != null) {
$this->post_order($node->left);
$this->post_order($node->right);
echo(" ". $node->data);
}
}
public function swap($first, $second) {
$value = $first->data;
$first->data = $second->data;
$second->data = $value;
}
public function maxHeap($head) {
if ($head == null) {
return;
}
$this->maxHeap($head->left);
$this->maxHeap($head->right);
if ($head->left != null && $head->left->data > $head->data) {
$this->swap($head, $head->left);
$this->maxHeap($head);
}
if ($head->right != null && $head->right->data > $head->data) {
$this->swap($head, $head->right);
$this->maxHeap($head);
}
}
}
function main() {
$obj = new BinaryTree();
/* Make A Binary Tree
-----------------------
5
/ \
4 7
/ / \
3 6 10
\ \
9 8
*/
$obj->root = new Node(5);
$obj->root->left = new Node(4);
$obj->root->right = new Node(7);
$obj->root->right->right = new Node(10);
$obj->root->right->left = new Node(6);
$obj->root->left->left = new Node(3);
$obj->root->right->left->right = new Node(8);
$obj->root->left->left->right = new Node(9);
echo("\nBefore Convert ");
echo("\nIn-order Data : ");
$obj->in_order($obj->root);
echo("\nPre-order Data : ");
$obj->pre_order($obj->root);
echo("\nPost-order Data : ");
$obj->post_order($obj->root);
$obj->maxHeap($obj->root);
echo("\nAfter Convert ");
echo("\nIn-order Data : ");
$obj->in_order($obj->root);
echo("\nPre-order Data : ");
$obj->pre_order($obj->root);
echo("\nPost-order Data : ");
$obj->post_order($obj->root);
}
main();
Output
Before Convert
In-order Data : 3 9 4 5 6 8 7 10
Pre-order Data : 5 4 3 9 7 6 8 10
Post-order Data : 9 3 4 8 6 10 7 5
After Convert
In-order Data : 4 3 5 10 7 6 9 8
Pre-order Data : 10 5 4 3 9 7 6 8
Post-order Data : 3 4 5 6 7 8 9 10
/*
Node JS Program
Convert a binary tree to Max Heap
*/
class Node {
constructor(value) {
this.data = value;
this.left = null;
this.right = null;
}
}
class BinaryTree {
constructor() {
this.root = null;
}
in_order(node) {
if (node != null) {
this.in_order(node.left);
process.stdout.write(" " + node.data);
this.in_order(node.right);
}
}
pre_order(node) {
if (node != null) {
process.stdout.write(" " + node.data);
this.pre_order(node.left);
this.pre_order(node.right);
}
}
post_order(node) {
if (node != null) {
this.post_order(node.left);
this.post_order(node.right);
process.stdout.write(" " + node.data);
}
}
swap(first, second) {
var value = first.data;
first.data = second.data;
second.data = value;
}
maxHeap(head) {
if (head == null) {
return;
}
this.maxHeap(head.left);
this.maxHeap(head.right);
if (head.left != null && head.left.data > head.data) {
this.swap(head, head.left);
this.maxHeap(head);
}
if (head.right != null && head.right.data > head.data) {
this.swap(head, head.right);
this.maxHeap(head);
}
}
}
function main() {
var obj = new BinaryTree();
/* Make A Binary Tree
-----------------------
5
/ \
4 7
/ / \
3 6 10
\ \
9 8
*/
obj.root = new Node(5);
obj.root.left = new Node(4);
obj.root.right = new Node(7);
obj.root.right.right = new Node(10);
obj.root.right.left = new Node(6);
obj.root.left.left = new Node(3);
obj.root.right.left.right = new Node(8);
obj.root.left.left.right = new Node(9);
process.stdout.write("\nBefore Convert ");
process.stdout.write("\nIn-order Data : ");
obj.in_order(obj.root);
process.stdout.write("\nPre-order Data : ");
obj.pre_order(obj.root);
process.stdout.write("\nPost-order Data : ");
obj.post_order(obj.root);
obj.maxHeap(obj.root);
process.stdout.write("\nAfter Convert ");
process.stdout.write("\nIn-order Data : ");
obj.in_order(obj.root);
process.stdout.write("\nPre-order Data : ");
obj.pre_order(obj.root);
process.stdout.write("\nPost-order Data : ");
obj.post_order(obj.root);
}
main();
Output
Before Convert
In-order Data : 3 9 4 5 6 8 7 10
Pre-order Data : 5 4 3 9 7 6 8 10
Post-order Data : 9 3 4 8 6 10 7 5
After Convert
In-order Data : 4 3 5 10 7 6 9 8
Pre-order Data : 10 5 4 3 9 7 6 8
Post-order Data : 3 4 5 6 7 8 9 10
/*
Swift 4 Program
Convert a binary tree to Max Heap
*/
class Node {
var data: Int;
var left: Node? ;
var right: Node? ;
init(_ value: Int) {
self.data = value;
self.left = nil;
self.right = nil;
}
}
class BinaryTree {
var root: Node? ;
init() {
self.root = nil;
}
func in_order(_ node: Node? ) {
if (node != nil) {
self.in_order(node!.left);
print(node!.data, terminator:" ");
self.in_order(node!.right);
}
}
func pre_order(_ node: Node? ) {
if (node != nil) {
print(node!.data, terminator:" ");
self.pre_order(node!.left);
self.pre_order(node!.right);
}
}
func post_order(_ node: Node? ) {
if (node != nil) {
self.post_order(node!.left);
self.post_order(node!.right);
print(node!.data, terminator:" ");
}
}
func swap(_ first: Node? , _ second : Node? ) {
let value: Int = first!.data;
first!.data = second!.data;
second!.data = value;
}
func maxHeap(_ head: Node? ) {
if (head == nil) {
return;
}
self.maxHeap(head!.left);
self.maxHeap(head!.right);
if (head!.left != nil && head!.left!.data > head!.data) {
self.swap(head, head!.left);
self.maxHeap(head);
}
if (head!.right != nil && head!.right!.data > head!.data) {
self.swap(head, head!.right);
self.maxHeap(head);
}
}
}
func main() {
let obj: BinaryTree = BinaryTree();
/* Make A Binary Tree
-----------------------
5
/ \
4 7
/ / \
3 6 10
\ \
9 8
*/
obj.root = Node(5);
obj.root!.left = Node(4);
obj.root!.right = Node(7);
obj.root!.right!.right = Node(10);
obj.root!.right!.left = Node(6);
obj.root!.left!.left = Node(3);
obj.root!.right!.left!.right = Node(8);
obj.root!.left!.left!.right = Node(9);
print("\nBefore Convert ");
print("In-order Data : ");
obj.in_order(obj.root);
print("\nPre-order Data : ");
obj.pre_order(obj.root);
print("\nPost-order Data : ");
obj.post_order(obj.root);
obj.maxHeap(obj.root);
print("\n\nAfter Convert ");
print("In-order Data : ");
obj.in_order(obj.root);
print("\nPre-order Data : ");
obj.pre_order(obj.root);
print("\nPost-order Data : ");
obj.post_order(obj.root);
}
main();
Output
Before Convert
In-order Data :
3 9 4 5 6 8 7 10
Pre-order Data :
5 4 3 9 7 6 8 10
Post-order Data :
9 3 4 8 6 10 7 5
After Convert
In-order Data :
4 3 5 10 7 6 9 8
Pre-order Data :
10 5 4 3 9 7 6 8
Post-order Data :
3 4 5 6 7 8 9 10
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment