Construct skewed binary tree
Here given code implementation process.
/*
C Program
Construct skewed binary tree
*/
#include <stdio.h>
#include <stdlib.h>
// Tree Node
struct TreeNode
{
int data;
struct TreeNode *left;
struct TreeNode *right;
};
// Binary Tree
struct BinaryTree
{
struct TreeNode *root;
};
// Create new tree
struct BinaryTree *newTree()
{
// Create dynamic node
struct BinaryTree *tree = (struct BinaryTree *) malloc(sizeof(struct BinaryTree));
if (tree != NULL)
{
tree->root = NULL;
}
else
{
printf("Memory Overflow to Create tree Tree\n");
}
//return new tree
return tree;
}
// returns a new node of tree
struct TreeNode *newNode(int data)
{
// Create dynamic node
struct TreeNode *node = (struct TreeNode *) malloc(sizeof(struct TreeNode));
if (node != NULL)
{
//Set data and pointer values
node->data = data;
node->left = NULL;
node->right = NULL;
}
else
{
//This is indicates, segmentation fault or memory overflow problem
printf("Memory Overflow\n");
}
//return new node
return node;
}
//Display Inorder view of binary tree
void inorder(struct TreeNode *node)
{
if (node)
{
inorder(node->left);
//Print node value
printf(" %d", node->data);
inorder(node->right);
}
}
int main(int argc, char
const *argv[])
{
struct BinaryTree *tree1 = newTree();
struct BinaryTree *tree2 = newTree();
/*
10
\
20
\
30
\
40
-----------------------
Right skewed binary tree
-----------------------
*/
tree1->root = newNode(10);
tree1->root->right = newNode(20);
tree1->root->right->right = newNode(30);
tree1->root->right->right->right = newNode(40);
inorder(tree1->root);
/*
10
/
20
/
30
/
40
-----------------------
Left skewed binary tree
-----------------------
*/
tree2->root = newNode(10);
tree2->root->left = newNode(20);
tree2->root->left->left = newNode(30);
tree2->root->left->left->left = newNode(40);
printf("\n");
inorder(tree2->root);
return 0;
}
Output
10 20 30 40
40 30 20 10
/*
Java Program
Construct skewed binary tree
*/
// Binary Tree node
class TreeNode
{
public int data;
public TreeNode left;
public TreeNode right;
public TreeNode(int data)
{
// Set node value
this.data = data;
this.left = null;
this.right = null;
}
}
// Define Binary Tree
public class BinaryTree
{
public TreeNode root;
public BinaryTree()
{
this.root = null;
}
//Display Inorder view of binary tree
public void inorder(TreeNode node)
{
if (node != null)
{
inorder(node.left);
//Print node value
System.out.print(" " + node.data);
inorder(node.right);
}
}
public static void main(String[] args)
{
BinaryTree tree1 = new BinaryTree();
BinaryTree tree2 = new BinaryTree();
/*
10
\
20
\
30
\
40
-----------------------
Right skewed binary tree
-----------------------
*/
tree1.root = new TreeNode(10);
tree1.root.right = new TreeNode(20);
tree1.root.right.right = new TreeNode(30);
tree1.root.right.right.right = new TreeNode(40);
tree1.inorder(tree1.root);
/*
10
/
20
/
30
/
40
-----------------------
Left skewed binary tree
-----------------------
*/
tree2.root = new TreeNode(10);
tree2.root.left = new TreeNode(20);
tree2.root.left.left = new TreeNode(30);
tree2.root.left.left.left = new TreeNode(40);
System.out.print("\n");
tree2.inorder(tree2.root);
}
}
Output
10 20 30 40
40 30 20 10
// Include header file
#include <iostream>
using namespace std;
/*
C++ Program
Construct skewed binary tree
*/
// Binary Tree node
class TreeNode
{
public:
int data;
TreeNode *left;
TreeNode *right;
TreeNode(int data)
{
// Set node value
this->data = data;
this->left = NULL;
this->right = NULL;
}
};
// Define Binary Tree
class BinaryTree
{
public:
TreeNode *root;
BinaryTree()
{
this->root = NULL;
}
//Display Inorder view of binary tree
void inorder(TreeNode *node)
{
if (node != NULL)
{
this->inorder(node->left);
//Print node value
cout << " " << node->data;
this->inorder(node->right);
}
}
};
int main()
{
BinaryTree tree1 = BinaryTree();
BinaryTree tree2 = BinaryTree();
/*
10
\
20
\
30
\
40
-----------------------
Right skewed binary tree
-----------------------
*/
tree1.root = new TreeNode(10);
tree1.root->right = new TreeNode(20);
tree1.root->right->right = new TreeNode(30);
tree1.root->right->right->right = new TreeNode(40);
tree1.inorder(tree1.root);
/*
10
/
20
/
30
/
40
-----------------------
Left skewed binary tree
-----------------------
*/
tree2.root = new TreeNode(10);
tree2.root->left = new TreeNode(20);
tree2.root->left->left = new TreeNode(30);
tree2.root->left->left->left = new TreeNode(40);
cout << "\n";
tree2.inorder(tree2.root);
return 0;
}
Output
10 20 30 40
40 30 20 10
// Include namespace system
using System;
/*
C# Program
Construct skewed binary tree
*/
// Binary Tree node
public class TreeNode
{
public int data;
public TreeNode left;
public TreeNode right;
public TreeNode(int data)
{
// Set node value
this.data = data;
this.left = null;
this.right = null;
}
}
// Define Binary Tree
public class BinaryTree
{
public TreeNode root;
public BinaryTree()
{
this.root = null;
}
//Display Inorder view of binary tree
public void inorder(TreeNode node)
{
if (node != null)
{
inorder(node.left);
//Print node value
Console.Write(" " + node.data);
inorder(node.right);
}
}
public static void Main(String[] args)
{
BinaryTree tree1 = new BinaryTree();
BinaryTree tree2 = new BinaryTree();
/*
10
\
20
\
30
\
40
-----------------------
Right skewed binary tree
-----------------------
*/
tree1.root = new TreeNode(10);
tree1.root.right = new TreeNode(20);
tree1.root.right.right = new TreeNode(30);
tree1.root.right.right.right = new TreeNode(40);
tree1.inorder(tree1.root);
/*
10
/
20
/
30
/
40
-----------------------
Left skewed binary tree
-----------------------
*/
tree2.root = new TreeNode(10);
tree2.root.left = new TreeNode(20);
tree2.root.left.left = new TreeNode(30);
tree2.root.left.left.left = new TreeNode(40);
Console.Write("\n");
tree2.inorder(tree2.root);
}
}
Output
10 20 30 40
40 30 20 10
<?php
/*
Php Program
Construct skewed binary tree
*/
// Binary Tree node
class TreeNode
{
public $data;
public $left;
public $right;
function __construct($data)
{
// Set node value
$this->data = $data;
$this->left = null;
$this->right = null;
}
}
// Define Binary Tree
class BinaryTree
{
public $root;
function __construct()
{
$this->root = null;
}
//Display Inorder view of binary tree
public function inorder($node)
{
if ($node != null)
{
$this->inorder($node->left);
//Print node value
echo " ". $node->data;
$this->inorder($node->right);
}
}
}
function main()
{
$tree1 = new BinaryTree();
$tree2 = new BinaryTree();
/*
10
\
20
\
30
\
40
-----------------------
Right skewed binary tree
-----------------------
*/
$tree1->root = new TreeNode(10);
$tree1->root->right = new TreeNode(20);
$tree1->root->right->right = new TreeNode(30);
$tree1->root->right->right->right = new TreeNode(40);
$tree1->inorder($tree1->root);
/*
10
/
20
/
30
/
40
-----------------------
Left skewed binary tree
-----------------------
*/
$tree2->root = new TreeNode(10);
$tree2->root->left = new TreeNode(20);
$tree2->root->left->left = new TreeNode(30);
$tree2->root->left->left->left = new TreeNode(40);
echo "\n";
$tree2->inorder($tree2->root);
}
main();
Output
10 20 30 40
40 30 20 10
/*
Node Js Program
Construct skewed binary tree
*/
// Binary Tree node
class TreeNode
{
constructor(data)
{
// Set node value
this.data = data;
this.left = null;
this.right = null;
}
}
// Define Binary Tree
class BinaryTree
{
constructor()
{
this.root = null;
}
//Display Inorder view of binary tree
inorder(node)
{
if (node != null)
{
this.inorder(node.left);
//Print node value
process.stdout.write(" " + node.data);
this.inorder(node.right);
}
}
}
function main()
{
var tree1 = new BinaryTree();
var tree2 = new BinaryTree();
/*
10
\
20
\
30
\
40
-----------------------
Right skewed binary tree
-----------------------
*/
tree1.root = new TreeNode(10);
tree1.root.right = new TreeNode(20);
tree1.root.right.right = new TreeNode(30);
tree1.root.right.right.right = new TreeNode(40);
tree1.inorder(tree1.root);
/*
10
/
20
/
30
/
40
-----------------------
Left skewed binary tree
-----------------------
*/
tree2.root = new TreeNode(10);
tree2.root.left = new TreeNode(20);
tree2.root.left.left = new TreeNode(30);
tree2.root.left.left.left = new TreeNode(40);
process.stdout.write("\n");
tree2.inorder(tree2.root);
}
main();
Output
10 20 30 40
40 30 20 10
# Python 3 Program
# Construct skewed binary tree
# Binary Tree node
class TreeNode :
def __init__(self, data) :
# Set node value
self.data = data
self.left = None
self.right = None
# Define Binary Tree
class BinaryTree :
def __init__(self) :
self.root = None
# Display Inorder view of binary tree
def inorder(self, node) :
if (node != None) :
self.inorder(node.left)
# Print node value
print(" ", node.data, end = "")
self.inorder(node.right)
def main() :
tree1 = BinaryTree()
tree2 = BinaryTree()
#
# 10
# \
# 20
# \
# 30
# \
# 40
# -----------------------
# Right skewed binary tree
# -----------------------
tree1.root = TreeNode(10)
tree1.root.right = TreeNode(20)
tree1.root.right.right = TreeNode(30)
tree1.root.right.right.right = TreeNode(40)
tree1.inorder(tree1.root)
#
# 10
# /
# 20
# /
# 30
# /
# 40
# -----------------------
# Left skewed binary tree
# -----------------------
tree2.root = TreeNode(10)
tree2.root.left = TreeNode(20)
tree2.root.left.left = TreeNode(30)
tree2.root.left.left.left = TreeNode(40)
print(end = "\n")
tree2.inorder(tree2.root)
if __name__ == "__main__": main()
Output
10 20 30 40
40 30 20 10
# Ruby Program
# Construct skewed binary tree
# Binary Tree node
class TreeNode
# Define the accessor and reader of class TreeNode
attr_reader :data, :left, :right
attr_accessor :data, :left, :right
def initialize(data)
# Set node value
self.data = data
self.left = nil
self.right = nil
end
end
# Define Binary Tree
class BinaryTree
# Define the accessor and reader of class BinaryTree
attr_reader :root
attr_accessor :root
def initialize()
self.root = nil
end
# Display Inorder view of binary tree
def inorder(node)
if (node != nil)
self.inorder(node.left)
# Print node value
print(" ", node.data)
self.inorder(node.right)
end
end
end
def main()
tree1 = BinaryTree.new()
tree2 = BinaryTree.new()
#
# 10
# \
# 20
# \
# 30
# \
# 40
# -----------------------
# Right skewed binary tree
# -----------------------
tree1.root = TreeNode.new(10)
tree1.root.right = TreeNode.new(20)
tree1.root.right.right = TreeNode.new(30)
tree1.root.right.right.right = TreeNode.new(40)
tree1.inorder(tree1.root)
#
# 10
# /
# 20
# /
# 30
# /
# 40
# -----------------------
# Left skewed binary tree
# -----------------------
tree2.root = TreeNode.new(10)
tree2.root.left = TreeNode.new(20)
tree2.root.left.left = TreeNode.new(30)
tree2.root.left.left.left = TreeNode.new(40)
print("\n")
tree2.inorder(tree2.root)
end
main()
Output
10 20 30 40
40 30 20 10
/*
Scala Program
Construct skewed binary tree
*/
// Binary Tree node
class TreeNode(var data: Int , var left: TreeNode , var right: TreeNode)
{
def this(data: Int)
{
this(data, null, null);
}
}
// Define Binary Tree
class BinaryTree(var root: TreeNode)
{
def this()
{
this(null);
}
//Display Inorder view of binary tree
def inorder(node: TreeNode): Unit = {
if (node != null)
{
this.inorder(node.left);
//Print node value
print(" " + node.data);
this.inorder(node.right);
}
}
}
object Main
{
def main(args: Array[String]): Unit = {
var tree1: BinaryTree = new BinaryTree();
var tree2: BinaryTree = new BinaryTree();
/*
10
\
20
\
30
\
40
-----------------------
Right skewed binary tree
-----------------------
*/
tree1.root = new TreeNode(10);
tree1.root.right = new TreeNode(20);
tree1.root.right.right = new TreeNode(30);
tree1.root.right.right.right = new TreeNode(40);
tree1.inorder(tree1.root);
/*
10
/
20
/
30
/
40
-----------------------
Left skewed binary tree
-----------------------
*/
tree2.root = new TreeNode(10);
tree2.root.left = new TreeNode(20);
tree2.root.left.left = new TreeNode(30);
tree2.root.left.left.left = new TreeNode(40);
print("\n");
tree2.inorder(tree2.root);
}
}
Output
10 20 30 40
40 30 20 10
/*
Swift 4 Program
Construct skewed binary tree
*/
// Binary Tree node
class TreeNode
{
var data: Int;
var left: TreeNode? ;
var right: TreeNode? ;
init(_ data: Int)
{
// Set node value
self.data = data;
self.left = nil;
self.right = nil;
}
}
// Define Binary Tree
class BinaryTree
{
var root: TreeNode? ;
init()
{
self.root = nil;
}
//Display Inorder view of binary tree
func inorder(_ node: TreeNode? )
{
if (node != nil)
{
self.inorder(node!.left);
//Print node value
print(" ", node!.data, terminator: "");
self.inorder(node!.right);
}
}
}
func main()
{
let tree1: BinaryTree = BinaryTree();
let tree2: BinaryTree = BinaryTree();
/*
10
\
20
\
30
\
40
-----------------------
Right skewed binary tree
-----------------------
*/
tree1.root = TreeNode(10);
tree1.root!.right = TreeNode(20);
tree1.root!.right!.right = TreeNode(30);
tree1.root!.right!.right!.right = TreeNode(40);
tree1.inorder(tree1.root);
/*
10
/
20
/
30
/
40
-----------------------
Left skewed binary tree
-----------------------
*/
tree2.root = TreeNode(10);
tree2.root!.left = TreeNode(20);
tree2.root!.left!.left = TreeNode(30);
tree2.root!.left!.left!.left = TreeNode(40);
print(terminator: "\n");
tree2.inorder(tree2.root);
}
main();
Output
10 20 30 40
40 30 20 10
/*
Kotlin Program
Construct skewed binary tree
*/
// Binary Tree node
class TreeNode
{
var data: Int;
var left: TreeNode ? ;
var right: TreeNode ? ;
constructor(data: Int)
{
// Set node value
this.data = data;
this.left = null;
this.right = null;
}
}
// Define Binary Tree
class BinaryTree
{
var root: TreeNode ? ;
constructor()
{
this.root = null;
}
//Display Inorder view of binary tree
fun inorder(node: TreeNode ? ): Unit
{
if (node != null)
{
this.inorder(node.left);
//Print node value
print(" " + node.data);
this.inorder(node.right);
}
}
}
fun main(args: Array < String > ): Unit
{
var tree1: BinaryTree = BinaryTree();
var tree2: BinaryTree = BinaryTree();
/*
10
\
20
\
30
\
40
-----------------------
Right skewed binary tree
-----------------------
*/
tree1.root = TreeNode(10);
tree1.root?.right = TreeNode(20);
tree1.root?.right?.right = TreeNode(30);
tree1.root?.right?.right?.right = TreeNode(40);
tree1.inorder(tree1.root);
/*
10
/
20
/
30
/
40
-----------------------
Left skewed binary tree
-----------------------
*/
tree2.root = TreeNode(10);
tree2.root?.left = TreeNode(20);
tree2.root?.left?.left = TreeNode(30);
tree2.root?.left?.left?.left = TreeNode(40);
print("\n");
tree2.inorder(tree2.root);
}
Output
10 20 30 40
40 30 20 10
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment