Check whether sum of digits at odd places of a number is divisible by K
Here given code implementation process.
// C Program for
// Check whether sum of digits at odd places of a number is divisible by K
#include <stdio.h>
int absValue(int num)
{
if (num < 0)
{
return -num;
}
return num;
}
void oddPlaceSumDividByK(int num, int k)
{
printf("\n Given number : %d ", num);
printf("\n Given k : %d ", k);
int sum = 0;
int selector = 1;
int x = absValue(num);
// Sum of digit
while (x > 0)
{
if (selector == 1)
{
// Odd place number
sum += (x % 10);
selector = 0;
}
else
{
selector = 1;
}
x = x / 10;
}
if ((sum % k) != 0)
{
printf("\n (%d %% %d) : No ", sum, k);
}
else
{
printf("\n (%d %% %d) : Yes ", sum, k);
}
}
int main(int argc, char
const *argv[])
{
// Test
// num = 54273 k = 5
// Odd place digit sum
// [5 + 2 + 3] = 10
// (10 % 5) == 0
// ---------------------
// Output : Yes
oddPlaceSumDividByK(54273, 5);
// num = 423
// k = 6
// Odd place digit sum
// [4 + 3] = 7
// (7 % 6) != 0
// ---------------------
// Output : No
oddPlaceSumDividByK(423, 6);
// num = 24
// k = 2
// Odd place digit sum
// [4] = 4
// (4 % 2) == 0
// ---------------------
// Output : Yes
oddPlaceSumDividByK(24, 2);
return 0;
}
Output
Given number : 54273
Given k : 5
(10 % 5) : Yes
Given number : 423
Given k : 6
(7 % 6) : No
Given number : 24
Given k : 2
(4 % 2) : Yes
// Java program for
// Check whether sum of digits at odd places of a number is divisible by K
public class Divisibility
{
public int absValue(int num)
{
if (num < 0)
{
return -num;
}
return num;
}
public void oddPlaceSumDividByK(int num, int k)
{
System.out.print("\n Given number : " + num);
System.out.print("\n Given k : " + k);
int sum = 0;
int selector = 1;
int x = absValue(num);
// Sum of digit
while (x > 0)
{
if (selector == 1)
{
// Odd place number
sum += (x % 10);
selector = 0;
}
else
{
selector = 1;
}
x = x / 10;
}
if ((sum % k) != 0)
{
System.out.print("\n (" + sum + " % " + k + ") : No ");
}
else
{
System.out.print("\n (" + sum + " % " + k + ") : Yes ");
}
}
public static void main(String[] args)
{
Divisibility task = new Divisibility();
// Test
// num = 54273 k = 5
// Odd place digit sum
// [5 + 2 + 3] = 10
// (10 % 5) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(54273, 5);
// num = 423
// k = 6
// Odd place digit sum
// [4 + 3] = 7
// (7 % 6) != 0
// ---------------------
// Output : No
task.oddPlaceSumDividByK(423, 6);
// num = 24
// k = 2
// Odd place digit sum
// [4] = 4
// (4 % 2) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(24, 2);
}
}
Output
Given number : 54273
Given k : 5
(10 % 5) : Yes
Given number : 423
Given k : 6
(7 % 6) : No
Given number : 24
Given k : 2
(4 % 2) : Yes
// Include header file
#include <iostream>
using namespace std;
// C++ program for
// Check whether sum of digits at odd places of a number is divisible by K
class Divisibility
{
public: int absValue(int num)
{
if (num < 0)
{
return -num;
}
return num;
}
void oddPlaceSumDividByK(int num, int k)
{
cout << "\n Given number : " << num;
cout << "\n Given k : " << k;
int sum = 0;
int selector = 1;
int x = this->absValue(num);
// Sum of digit
while (x > 0)
{
if (selector == 1)
{
// Odd place number
sum += (x % 10);
selector = 0;
}
else
{
selector = 1;
}
x = x / 10;
}
if ((sum % k) != 0)
{
cout << "\n (" << sum << " % " << k << ") : No ";
}
else
{
cout << "\n (" << sum << " % " << k << ") : Yes ";
}
}
};
int main()
{
Divisibility *task = new Divisibility();
// Test
// num = 54273 k = 5
// Odd place digit sum
// [5 + 2 + 3] = 10
// (10 % 5) == 0
// ---------------------
// Output : Yes
task->oddPlaceSumDividByK(54273, 5);
// num = 423
// k = 6
// Odd place digit sum
// [4 + 3] = 7
// (7 % 6) != 0
// ---------------------
// Output : No
task->oddPlaceSumDividByK(423, 6);
// num = 24
// k = 2
// Odd place digit sum
// [4] = 4
// (4 % 2) == 0
// ---------------------
// Output : Yes
task->oddPlaceSumDividByK(24, 2);
return 0;
}
Output
Given number : 54273
Given k : 5
(10 % 5) : Yes
Given number : 423
Given k : 6
(7 % 6) : No
Given number : 24
Given k : 2
(4 % 2) : Yes
package main
import "fmt"
// Go program for
// Check whether sum of digits at odd places of a number is divisible by K
type Divisibility struct {}
func getDivisibility() * Divisibility {
var me *Divisibility = &Divisibility {}
return me
}
func(this Divisibility) absValue(num int) int {
if num < 0 {
return -num
}
return num
}
func(this Divisibility) oddPlaceSumDividByK(num, k int) {
fmt.Print("\n Given number : ", num)
fmt.Print("\n Given k : ", k)
var sum int = 0
var selector int = 1
var x int = this.absValue(num)
// Sum of digit
for (x > 0) {
if selector == 1 {
// Odd place number
sum += (x % 10)
selector = 0
} else {
selector = 1
}
x = x / 10
}
if (sum % k) != 0 {
fmt.Print("\n (", sum, " % ", k, ") : No ")
} else {
fmt.Print("\n (", sum, " % ", k, ") : Yes ")
}
}
func main() {
var task * Divisibility = getDivisibility()
// Test
// num = 54273 k = 5
// Odd place digit sum
// [5 + 2 + 3] = 10
// (10 % 5) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(54273, 5)
// num = 423
// k = 6
// Odd place digit sum
// [4 + 3] = 7
// (7 % 6) != 0
// ---------------------
// Output : No
task.oddPlaceSumDividByK(423, 6)
// num = 24
// k = 2
// Odd place digit sum
// [4] = 4
// (4 % 2) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(24, 2)
}
Output
Given number : 54273
Given k : 5
(10 % 5) : Yes
Given number : 423
Given k : 6
(7 % 6) : No
Given number : 24
Given k : 2
(4 % 2) : Yes
// Include namespace system
using System;
// Csharp program for
// Check whether sum of digits at odd places of a number is divisible by K
public class Divisibility
{
public int absValue(int num)
{
if (num < 0)
{
return -num;
}
return num;
}
public void oddPlaceSumDividByK(int num, int k)
{
Console.Write("\n Given number : " + num);
Console.Write("\n Given k : " + k);
int sum = 0;
int selector = 1;
int x = this.absValue(num);
// Sum of digit
while (x > 0)
{
if (selector == 1)
{
// Odd place number
sum += (x % 10);
selector = 0;
}
else
{
selector = 1;
}
x = x / 10;
}
if ((sum % k) != 0)
{
Console.Write("\n (" + sum + " % " + k + ") : No ");
}
else
{
Console.Write("\n (" + sum + " % " + k + ") : Yes ");
}
}
public static void Main(String[] args)
{
Divisibility task = new Divisibility();
// Test
// num = 54273 k = 5
// Odd place digit sum
// [5 + 2 + 3] = 10
// (10 % 5) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(54273, 5);
// num = 423
// k = 6
// Odd place digit sum
// [4 + 3] = 7
// (7 % 6) != 0
// ---------------------
// Output : No
task.oddPlaceSumDividByK(423, 6);
// num = 24
// k = 2
// Odd place digit sum
// [4] = 4
// (4 % 2) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(24, 2);
}
}
Output
Given number : 54273
Given k : 5
(10 % 5) : Yes
Given number : 423
Given k : 6
(7 % 6) : No
Given number : 24
Given k : 2
(4 % 2) : Yes
<?php
// Php program for
// Check whether sum of digits at odd places of a number is divisible by K
class Divisibility
{
public function absValue($num)
{
if ($num < 0)
{
return -$num;
}
return $num;
}
public function oddPlaceSumDividByK($num, $k)
{
echo("\n Given number : ".$num);
echo("\n Given k : ".$k);
$sum = 0;
$selector = 1;
$x = $this->absValue($num);
// Sum of digit
while ($x > 0)
{
if ($selector == 1)
{
// Odd place number
$sum += ($x % 10);
$selector = 0;
}
else
{
$selector = 1;
}
$x = (int)($x / 10);
}
if (($sum % $k) != 0)
{
echo("\n (".$sum.
" % ".$k.
") : No ");
}
else
{
echo("\n (".$sum.
" % ".$k.
") : Yes ");
}
}
}
function main()
{
$task = new Divisibility();
// Test
// num = 54273 k = 5
// Odd place digit sum
// [5 + 2 + 3] = 10
// (10 % 5) == 0
// ---------------------
// Output : Yes
$task->oddPlaceSumDividByK(54273, 5);
// num = 423
// k = 6
// Odd place digit sum
// [4 + 3] = 7
// (7 % 6) != 0
// ---------------------
// Output : No
$task->oddPlaceSumDividByK(423, 6);
// num = 24
// k = 2
// Odd place digit sum
// [4] = 4
// (4 % 2) == 0
// ---------------------
// Output : Yes
$task->oddPlaceSumDividByK(24, 2);
}
main();
Output
Given number : 54273
Given k : 5
(10 % 5) : Yes
Given number : 423
Given k : 6
(7 % 6) : No
Given number : 24
Given k : 2
(4 % 2) : Yes
// Node JS program for
// Check whether sum of digits at odd places of a number is divisible by K
class Divisibility
{
absValue(num)
{
if (num < 0)
{
return -num;
}
return num;
}
oddPlaceSumDividByK(num, k)
{
process.stdout.write("\n Given number : " + num);
process.stdout.write("\n Given k : " + k);
var sum = 0;
var selector = 1;
var x = this.absValue(num);
// Sum of digit
while (x > 0)
{
if (selector == 1)
{
// Odd place number
sum += (x % 10);
selector = 0;
}
else
{
selector = 1;
}
x = parseInt(x / 10);
}
if ((sum % k) != 0)
{
process.stdout.write("\n (" + sum + " % " + k + ") : No ");
}
else
{
process.stdout.write("\n (" + sum + " % " + k + ") : Yes ");
}
}
}
function main()
{
var task = new Divisibility();
// Test
// num = 54273 k = 5
// Odd place digit sum
// [5 + 2 + 3] = 10
// (10 % 5) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(54273, 5);
// num = 423
// k = 6
// Odd place digit sum
// [4 + 3] = 7
// (7 % 6) != 0
// ---------------------
// Output : No
task.oddPlaceSumDividByK(423, 6);
// num = 24
// k = 2
// Odd place digit sum
// [4] = 4
// (4 % 2) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(24, 2);
}
main();
Output
Given number : 54273
Given k : 5
(10 % 5) : Yes
Given number : 423
Given k : 6
(7 % 6) : No
Given number : 24
Given k : 2
(4 % 2) : Yes
# Python 3 program for
# Check whether sum of digits at odd places of a number is divisible by K
class Divisibility :
def absValue(self, num) :
if (num < 0) :
return -num
return num
def oddPlaceSumDividByK(self, num, k) :
print("\n Given number : ", num, end = "")
print("\n Given k : ", k, end = "")
sum = 0
selector = 1
x = self.absValue(num)
# Sum of digit
while (x > 0) :
if (selector == 1) :
# Odd place number
sum += (x % 10)
selector = 0
else :
selector = 1
x = int(x / 10)
if ((sum % k) != 0) :
print("\n (", sum ," % ", k ,") : No ", end = "")
else :
print("\n (", sum ," % ", k ,") : Yes ", end = "")
def main() :
task = Divisibility()
# Test
# num = 54273 k = 5
# Odd place digit sum
# [5 + 2 + 3] = 10
# (10 % 5) == 0
# ---------------------
# Output : Yes
task.oddPlaceSumDividByK(54273, 5)
# num = 423
# k = 6
# Odd place digit sum
# [4 + 3] = 7
# (7 % 6) != 0
# ---------------------
# Output : No
task.oddPlaceSumDividByK(423, 6)
# num = 24
# k = 2
# Odd place digit sum
# [4] = 4
# (4 % 2) == 0
# ---------------------
# Output : Yes
task.oddPlaceSumDividByK(24, 2)
if __name__ == "__main__": main()
Output
Given number : 54273
Given k : 5
( 10 % 5 ) : Yes
Given number : 423
Given k : 6
( 7 % 6 ) : No
Given number : 24
Given k : 2
( 4 % 2 ) : Yes
# Ruby program for
# Check whether sum of digits at odd places of a number is divisible by K
class Divisibility
def absValue(num)
if (num < 0)
return -num
end
return num
end
def oddPlaceSumDividByK(num, k)
print("\n Given number : ", num)
print("\n Given k : ", k)
sum = 0
selector = 1
x = self.absValue(num)
# Sum of digit
while (x > 0)
if (selector == 1)
# Odd place number
sum += (x % 10)
selector = 0
else
selector = 1
end
x = x / 10
end
if ((sum % k) != 0)
print("\n (", sum ," % ", k ,") : No ")
else
print("\n (", sum ," % ", k ,") : Yes ")
end
end
end
def main()
task = Divisibility.new()
# Test
# num = 54273 k = 5
# Odd place digit sum
# [5 + 2 + 3] = 10
# (10 % 5) == 0
# ---------------------
# Output : Yes
task.oddPlaceSumDividByK(54273, 5)
# num = 423
# k = 6
# Odd place digit sum
# [4 + 3] = 7
# (7 % 6) != 0
# ---------------------
# Output : No
task.oddPlaceSumDividByK(423, 6)
# num = 24
# k = 2
# Odd place digit sum
# [4] = 4
# (4 % 2) == 0
# ---------------------
# Output : Yes
task.oddPlaceSumDividByK(24, 2)
end
main()
Output
Given number : 54273
Given k : 5
(10 % 5) : Yes
Given number : 423
Given k : 6
(7 % 6) : No
Given number : 24
Given k : 2
(4 % 2) : Yes
// Scala program for
// Check whether sum of digits at odd places of a number is divisible by K
class Divisibility()
{
def absValue(num: Int): Int = {
if (num < 0)
{
return -num;
}
return num;
}
def oddPlaceSumDividByK(num: Int, k: Int): Unit = {
print("\n Given number : " + num);
print("\n Given k : " + k);
var sum: Int = 0;
var selector: Int = 1;
var x: Int = absValue(num);
// Sum of digit
while (x > 0)
{
if (selector == 1)
{
// Odd place number
sum += (x % 10);
selector = 0;
}
else
{
selector = 1;
}
x = x / 10;
}
if ((sum % k) != 0)
{
print("\n (" + sum + " % " + k + ") : No ");
}
else
{
print("\n (" + sum + " % " + k + ") : Yes ");
}
}
}
object Main
{
def main(args: Array[String]): Unit = {
var task: Divisibility = new Divisibility();
// Test
// num = 54273 k = 5
// Odd place digit sum
// [5 + 2 + 3] = 10
// (10 % 5) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(54273, 5);
// num = 423
// k = 6
// Odd place digit sum
// [4 + 3] = 7
// (7 % 6) != 0
// ---------------------
// Output : No
task.oddPlaceSumDividByK(423, 6);
// num = 24
// k = 2
// Odd place digit sum
// [4] = 4
// (4 % 2) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(24, 2);
}
}
Output
Given number : 54273
Given k : 5
(10 % 5) : Yes
Given number : 423
Given k : 6
(7 % 6) : No
Given number : 24
Given k : 2
(4 % 2) : Yes
// Swift 4 program for
// Check whether sum of digits at odd places of a number is divisible by K
class Divisibility
{
func absValue(_ num: Int) -> Int
{
if (num < 0)
{
return -num;
}
return num;
}
func oddPlaceSumDividByK(_ num: Int, _ k: Int)
{
print("\n Given number : ", num, terminator: "");
print("\n Given k : ", k, terminator: "");
var sum: Int = 0;
var selector: Int = 1;
var x: Int = self.absValue(num);
// Sum of digit
while (x > 0)
{
if (selector == 1)
{
// Odd place number
sum += (x % 10);
selector = 0;
}
else
{
selector = 1;
}
x = x / 10;
}
if ((sum % k) != 0)
{
print("\n (", sum ," % ", k ,") : No ", terminator: "");
}
else
{
print("\n (", sum ," % ", k ,") : Yes ", terminator: "");
}
}
}
func main()
{
let task: Divisibility = Divisibility();
// Test
// num = 54273 k = 5
// Odd place digit sum
// [5 + 2 + 3] = 10
// (10 % 5) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(54273, 5);
// num = 423
// k = 6
// Odd place digit sum
// [4 + 3] = 7
// (7 % 6) != 0
// ---------------------
// Output : No
task.oddPlaceSumDividByK(423, 6);
// num = 24
// k = 2
// Odd place digit sum
// [4] = 4
// (4 % 2) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(24, 2);
}
main();
Output
Given number : 54273
Given k : 5
( 10 % 5 ) : Yes
Given number : 423
Given k : 6
( 7 % 6 ) : No
Given number : 24
Given k : 2
( 4 % 2 ) : Yes
// Kotlin program for
// Check whether sum of digits at odd places of a number is divisible by K
class Divisibility
{
fun absValue(num: Int): Int
{
if (num < 0)
{
return -num;
}
return num;
}
fun oddPlaceSumDividByK(num: Int, k: Int): Unit
{
print("\n Given number : " + num);
print("\n Given k : " + k);
var sum: Int = 0;
var selector: Int = 1;
var x: Int = this.absValue(num);
// Sum of digit
while (x > 0)
{
if (selector == 1)
{
// Odd place number
sum += (x % 10);
selector = 0;
}
else
{
selector = 1;
}
x = x / 10;
}
if ((sum % k) != 0)
{
print("\n (" + sum + " % " + k + ") : No ");
}
else
{
print("\n (" + sum + " % " + k + ") : Yes ");
}
}
}
fun main(args: Array < String > ): Unit
{
val task: Divisibility = Divisibility();
// Test
// num = 54273 k = 5
// Odd place digit sum
// [5 + 2 + 3] = 10
// (10 % 5) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(54273, 5);
// num = 423
// k = 6
// Odd place digit sum
// [4 + 3] = 7
// (7 % 6) != 0
// ---------------------
// Output : No
task.oddPlaceSumDividByK(423, 6);
// num = 24
// k = 2
// Odd place digit sum
// [4] = 4
// (4 % 2) == 0
// ---------------------
// Output : Yes
task.oddPlaceSumDividByK(24, 2);
}
Output
Given number : 54273
Given k : 5
(10 % 5) : Yes
Given number : 423
Given k : 6
(7 % 6) : No
Given number : 24
Given k : 2
(4 % 2) : Yes
Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.
New Comment