Check whether binary tree is form of max heap

Here given code implementation process.

/*
  C Program 
  Check whether binary tree is form of max heap
*/
#include <stdio.h>

#include <stdlib.h>
//structure of Binary Tree node
struct Node
{
  int data;
  struct Node*left,*right;
};


//Create a binary tree nodes and node fields (data,pointer) 
//And returning the reference of newly nodes
struct Node* insert(int data)
{
  //Create dynamic memory to new binary tree node
  struct Node*new_node=(struct Node*)malloc(sizeof(struct Node));
  if(new_node!=NULL){
    //set data and pointer values
    new_node->data=data;
    new_node->left=NULL; //Initially node left-pointer is NULL
    new_node->right=NULL;//Initially node right-pointer is NULL
  }else
  {
    printf("Memory Overflow\n");
    exit(0); //TerMaxate program execution
  }
  //return reference
  return new_node;
  
}

//Check that given binary tree is form of max heap or not
int is_max_heap(struct Node*root)
{

  if(root!=NULL)
  {
    if(root->left!=NULL && root->left->data > root->data ||
      root->right!=NULL && root->right->data > root->data)
    {
      //When tree is not a max heap
      return 0;
    }

    if(is_max_heap(root->left) == 1 && is_max_heap(root->right) == 1)
    {
      //When the tree is in the form of a max heap
      return 1;
    }

    return 0;
  }
  
  return 1;

}
//Display tree element inorder form
void inorder(struct Node*node){

  if(node){

    inorder(node->left);
    //Print node value
    printf("  %d",node->data);
    inorder(node->right);
  }


}
int main(){

  struct Node*root=NULL;
  
  /*  Make A Binary Tree
  -----------------------
             17
           /   \
          15     16
         / \    / \
        9   7  8   10
       /     \    
      6       2    
             /
            1
  */

  //Insertion of binary tree nodes
  root                    =insert(17);
  root->left              =insert(15);
  root->right             =insert(16);
  root->right->right      =insert(10);
  root->right->left       =insert(8);
  root->left->left        =insert(9);
  root->left->left->left  =insert(6);
  root->left->right =insert(7);
  root->left->right->right =insert(2);
  root->left->right->right->left=insert(1);
  inorder(root);
  if(is_max_heap(root)==1)
  {
    printf("\n Max Heap Binary Tree \n");
  }
  else
  {
    printf(" Not a Max Heap Binary Tree \n");
  }

  /*  Make A Binary Tree
  -----------------------
             17
           /   \
          15     16
         / \    / \
        9   7  8   10
       /     \       \
      6       2       20
             /
            1
  */
  root->right->right->right      =insert(20);
  inorder(root);
  if(is_max_heap(root)==1)
  {
    printf("\n Max Heap Binary Tree \n");
  }
  else
  {
    printf("\n Not a Max Heap Binary Tree \n");
  }


  return 0;
}

Output

  6  9  15  7  1  2  17  8  16  10
 Max Heap Binary Tree
  6  9  15  7  1  2  17  8  16  10  20
 Not a Max Heap Binary Tree
/*
  C++ Program
  Check whether binary tree is form of max heap
*/
#include<iostream>

using namespace std;


//Structure of Binary Tree node
class Node {
	public:
	int data;
	Node *left, *right;
	//make a tree node

	Node(int data) {
		//assign field values
		this->data = data;
		this->left = NULL;
		this->right = NULL;
	}
};
class MyHeap {
	public:
		Node *root;
	MyHeap() {
		this->root = NULL;
	}
	//Check that given binary tree is form of max heap or not
	bool is_max_heap(Node *root) {
		if (root != NULL) {
			if (root->left != NULL && root->left->data > root->data 
                || root->right != NULL && root->right->data > root->data) {
				return
				//When tree is not a max heap
				false;
			}
			if (this->is_max_heap(root->left) == true 
                && this->is_max_heap(root->right) == true) {
				return
				//When the tree is in the form of a max heap
				true;
			}
			return false;
		}
		return true;
	}
	//Display tree elements in order form
	void inorder(Node *node) {
		if (node != NULL) {
			this->inorder(node->left);
			//Print node value

			cout << " " << node->data;
			this->inorder(node->right);
		}
	}
};
int main() {
	MyHeap obj = MyHeap();
	/*  Make A Binary Tree
	    -----------------------
	               17
	             /   \
	            15     16
	           / \    / \
	          9   7  8   10
	         /     \    
	        6       2    
	               /
	              1
	    */
	//Insertion of binary tree nodes
	obj.root = new Node(17);
	obj.root->left = new Node(15);
	obj.root->right = new Node(16);
	obj.root->right->right = new Node(10);
	obj.root->right->left = new Node(8);
	obj.root->left->left = new Node(9);
	obj.root->left->left->left = new Node(6);
	obj.root->left->right = new Node(7);
	obj.root->left->right->right = new Node(2);
	obj.root->left->right->right->left = new Node(1);
	obj.inorder(obj.root);
	if (obj.is_max_heap(obj.root) == true) {
		cout << "\n Max Heap Binary Tree \n";
	} else {
		cout << " Not a Max Heap Binary Tree \n";
	}
	/*  Make A Binary Tree
	    -----------------------
	               17
	             /   \
	            15     16
	           / \    / \
	          9   7  8   10
	         /     \       \
	        6       2       20
	               /
	              1
	    */
	obj.root->right->right->right = new Node(20);
	obj.inorder(obj.root);
	if (obj.is_max_heap(obj.root) == true) {
		cout << "\n Max Heap Binary Tree \n";
	} else {
		cout << "\n Not a Max Heap Binary Tree \n";
	}
	return 0;
}

Output

 6 9 15 7 1 2 17 8 16 10
 Max Heap Binary Tree
 6 9 15 7 1 2 17 8 16 10 20
 Not a Max Heap Binary Tree
/* 
  Java Program
  Check whether binary tree is form of max heap
*/
//Structure of Binary Tree node
class Node 
{
 
  public int data;
  public  Node left, right;
  //make a tree node
  public Node(int data)
  {
    //assign field values
    this.data=data;
    left=null;
    right=null;
  }
}
public class MyHeap 
{ 
 
  public Node root;
  public MyHeap()
  {
    root=null;
  }
  //Check that given binary tree is form of max heap or not
  public boolean is_max_heap(Node root)
  {

    if(root!=null)
    {
      if(root.left!=null && root.left.data > root.data ||
        root.right!=null && root.right.data > root.data)
      {
        //When tree is not a max heap
        return false;
      }

      if(is_max_heap(root.left) == true && is_max_heap(root.right) == true)
      {
        //When the tree is in the form of a max heap
        return true;
      }

      return false;
    }
    
    return true;

  }
  //Display tree elements in order form
  public void inorder(Node node){

    if(node!=null){
      inorder(node.left);
      //Print node value
      System.out.print("  "+node.data);
      inorder(node.right);
    }

  }
  public static void main(String[] args) {
    MyHeap obj = new MyHeap();
    /*   Make A Binary Tree
    -----------------------
               17
             /   \
            15     16
           / \    / \
          9   7  8   10
         /     \    
        6       2    
               /
              1
    */

    //Insertion of binary tree nodes
    obj.root           =new Node(17);
    obj.root.left       =new Node(15);
    obj.root.right      =new Node(16);
    obj.root.right.right =new Node(10);
    obj.root.right.left =new Node(8);
    obj.root.left.left =new Node(9);
    obj.root.left.left.left  =new Node(6);
    obj.root.left.right =new Node(7);
    obj.root.left.right.right =new Node(2);
    obj.root.left.right.right.left=new Node(1);
    obj.inorder(obj.root);
    if(obj.is_max_heap(obj.root)==true)
    {
      System.out.print("\n Max Heap Binary Tree \n");
    }
    else
    {
      System.out.print(" Not a Max Heap Binary Tree \n");
    }

    /*   Make A Binary Tree
    -----------------------
               17
             /   \
            15     16
           / \    / \
          9   7  8   10
         /     \       \
        6       2       20
               /
              1
    */
    obj.root.right.right.right      =new Node(20);
    obj.inorder(obj.root);
    if(obj.is_max_heap(obj.root)==true)
    {
      System.out.print("\n Max Heap Binary Tree \n");
    }
    else
    {
      System.out.print("\n Not a Max Heap Binary Tree \n");
    }

  }
}

Output

 6 9 15 7 1 2 17 8 16 10
 Max Heap Binary Tree
 6 9 15 7 1 2 17 8 16 10 20
 Not a Max Heap Binary Tree
/* 
  C# Program
  Check whether binary tree is form of max heap
*/
using System;

//Structure of Binary Tree node
public class Node {
	public int data;
	public Node left;
	public Node right;
	//make a tree node
	public Node(int data) {
		//assign field values
		this.data = data;
		left = null;
		right = null;
	}
}
public class MyHeap {
	public Node root;
	public MyHeap() {
		root = null;
	}
	//Check that given binary tree is form of max heap or not
	public Boolean is_max_heap(Node root) {
		if (root != null) {
			if (root.left != null && root.left.data > root.data || root.right != null && root.right.data > root.data) {
				return false;
			}
			if (is_max_heap(root.left) == true && is_max_heap(root.right) == true) {
				return true;
			}
			return false;
		}
		return true;
	}
	//Display tree elements in order form
	public void inorder(Node node) {
		if (node != null) {
			inorder(node.left);
			Console.Write(" " + node.data);
			inorder(node.right);
		}
	}
	public static void Main(String[] args) {
		MyHeap obj = new MyHeap();
		/*   Make A Binary Tree
		    -----------------------
		               17
		             /   \
		            15     16
		           / \    / \
		          9   7  8   10
		         /     \    
		        6       2    
		               /
		              1
		    */
		//Insertion of binary tree nodes
		obj.root = new Node(17);
		obj.root.left = new Node(15);
		obj.root.right = new Node(16);
		obj.root.right.right = new Node(10);
		obj.root.right.left = new Node(8);
		obj.root.left.left = new Node(9);
		obj.root.left.left.left = new Node(6);
		obj.root.left.right = new Node(7);
		obj.root.left.right.right = new Node(2);
		obj.root.left.right.right.left = new Node(1);
		obj.inorder(obj.root);
		if (obj.is_max_heap(obj.root) == true) {
			Console.Write("\n Max Heap Binary Tree \n");
		} else {
			Console.Write(" Not a Max Heap Binary Tree \n");
		}
		/*   Make A Binary Tree
		    -----------------------
		               17
		             /   \
		            15     16
		           / \    / \
		          9   7  8   10
		         /     \       \
		        6       2       20
		               /
		              1
		    */
		obj.root.right.right.right = new Node(20);
		obj.inorder(obj.root);
		if (obj.is_max_heap(obj.root) == true) {
			Console.Write("\n Max Heap Binary Tree \n");
		} else {
			Console.Write("\n Not a Max Heap Binary Tree \n");
		}
	}
}

Output

 6 9 15 7 1 2 17 8 16 10
 Max Heap Binary Tree
 6 9 15 7 1 2 17 8 16 10 20
 Not a Max Heap Binary Tree
<?php
/*
  Php Program
  Check whether binary tree is form of max heap
*/
//Structure of Binary Tree node
class Node {
	public $data;
	public $left;
	public $right;
	//make a tree node

	function __construct($data) {
		//assign field values
		$this->data = $data;
		$this->left = null;
		$this->right = null;
	}
}
class MyHeap {
	public $root;

	function __construct() {
		$this->root = null;
	}
	//Check that given binary tree is form of max heap or not

	public 	function is_max_heap($root) {
		if ($root != null) {
			if ($root->left != null && $root->left->data > $root->data || $root->right != null && $root->right->data > $root->data) {
				return false;
			}
			if ($this->is_max_heap($root->left) == true && $this->is_max_heap($root->right) == true) {
				return true;
			}
			return false;
		}
		return true;
	}
	//Display tree elements in order form

	public 	function inorder($node) {
		if ($node != null) {
			$this->inorder($node->left);
			//Print node value

			echo(" ". $node->data);
			$this->inorder($node->right);
		}
	}
}

function main() {
	$obj = new MyHeap();
	/*  Make A Binary Tree
	    -----------------------
	               17
	             /   \
	            15     16
	           / \    / \
	          9   7  8   10
	         /     \    
	        6       2    
	               /
	              1
	    */
	//Insertion of binary tree nodes
	$obj->root = new Node(17);
	$obj->root->left = new Node(15);
	$obj->root->right = new Node(16);
	$obj->root->right->right = new Node(10);
	$obj->root->right->left = new Node(8);
	$obj->root->left->left = new Node(9);
	$obj->root->left->left->left = new Node(6);
	$obj->root->left->right = new Node(7);
	$obj->root->left->right->right = new Node(2);
	$obj->root->left->right->right->left = new Node(1);
	$obj->inorder($obj->root);
	if (
		$obj->is_max_heap($obj->root) == true) {
		echo("\n Max Heap Binary Tree \n");
	} else {
		echo(" Not a Max Heap Binary Tree \n");
	}
	/*  Make A Binary Tree
	    -----------------------
	               17
	             /   \
	            15     16
	           / \    / \
	          9   7  8   10
	         /     \       \
	        6       2       20
	               /
	              1
	    */
	$obj->root->right->right->right = new Node(20);
	$obj->inorder($obj->root);
	if (
		$obj->is_max_heap($obj->root) == true) {
		echo("\n Max Heap Binary Tree \n");
	} else {
		echo("\n Not a Max Heap Binary Tree \n");
	}

}
main();

Output

 6 9 15 7 1 2 17 8 16 10
 Max Heap Binary Tree
 6 9 15 7 1 2 17 8 16 10 20
 Not a Max Heap Binary Tree
/*
  Node Js Program
  Check whether binary tree is form of max heap
*/
//Structure of Binary Tree node
class Node {
	
	//make a tree node
	constructor(data) {
		//assign field values
		this.data = data;
		this.left = null;
		this.right = null;
	}
}
class MyHeap {
	constructor() {
		this.root = null;
	}
	//Check that given binary tree is form of max heap or not
	is_max_heap(root) {
		if (root != null) {
			if (root.left != null && root.left.data > root.data || root.right != null && root.right.data > root.data) {
				return false;
			}

			if (this.is_max_heap(root.left) == true && this.is_max_heap(root.right) == true) {
				return true;
			}

			return false;
		}

		return true;
	}

	//Display tree elements in order form
	inorder(node) {
		if (node != null) {
			this.inorder(node.left);
			//Print node value

			process.stdout.write(" " + node.data);
			this.inorder(node.right);
		}
	}
}

function main(args) {
	var obj = new MyHeap();
	/*  Make A Binary Tree
	    -----------------------
	               17
	             /   \
	            15     16
	           / \    / \
	          9   7  8   10
	         /     \    
	        6       2    
	               /
	              1
	    */
	//Insertion of binary tree nodes
	obj.root = new Node(17);
	obj.root.left = new Node(15);
	obj.root.right = new Node(16);
	obj.root.right.right = new Node(10);
	obj.root.right.left = new Node(8);
	obj.root.left.left = new Node(9);
	obj.root.left.left.left = new Node(6);
	obj.root.left.right = new Node(7);
	obj.root.left.right.right = new Node(2);
	obj.root.left.right.right.left = new Node(1);
	obj.inorder(obj.root);
	if (obj.is_max_heap(obj.root) == true) {
		process.stdout.write("\n Max Heap Binary Tree \n");
	} else {
		process.stdout.write(" Not a Max Heap Binary Tree \n");
	}

	/*  Make A Binary Tree
	    -----------------------
	               17
	             /   \
	            15     16
	           / \    / \
	          9   7  8   10
	         /     \       \
	        6       2       20
	               /
	              1
	    */
	obj.root.right.right.right = new Node(20);
	obj.inorder(obj.root);
	if (obj.is_max_heap(obj.root) == true) {
		process.stdout.write("\n Max Heap Binary Tree \n");
	} else {
		process.stdout.write("\n Not a Max Heap Binary Tree \n");
	}
}

main();

Output

 6 9 15 7 1 2 17 8 16 10
 Max Heap Binary Tree
 6 9 15 7 1 2 17 8 16 10 20
 Not a Max Heap Binary Tree
# Python 3 Program
# Check whether binary tree is form of max heap
# Structure of Binary Tree node
class Node :
	
	# make a tree node

	def __init__(self, data) :
		# assign field values
		self.data = data
		self.left = None
		self.right = None
	

class MyHeap :
	
	def __init__(self) :
		self.root = None
	
	# Check that given binary tree is form of max heap or not
	def is_max_heap(self, root) :
		if (root != None) :
			if (root.left != None and root.left.data > root.data or root.right != None and root.right.data > root.data) :
				return False
			
			if (self.is_max_heap(root.left) == True and self.is_max_heap(root.right) == True) :
				return True
			
			return False
		
		return True
	
	# Display tree elements in order form
	def inorder(self, node) :
		if (node != None) :
			self.inorder(node.left)
			print(" ", node.data, end = "")
			self.inorder(node.right)
		
	

def main() :
	obj = MyHeap()
	#  Make A Binary Tree
	#     -----------------------
	#                17
	#              /   \
	#             15     16
	#            / \    / \
	#           9   7  8   10
	#          /     \    
	#         6       2    
	#                /
	#               1
	#     
	# Insertion of binary tree nodes
	obj.root = Node(17)
	obj.root.left = Node(15)
	obj.root.right = Node(16)
	obj.root.right.right = Node(10)
	obj.root.right.left = Node(8)
	obj.root.left.left = Node(9)
	obj.root.left.left.left = Node(6)
	obj.root.left.right = Node(7)
	obj.root.left.right.right = Node(2)
	obj.root.left.right.right.left = Node(1)
	obj.inorder(obj.root)
	if (obj.is_max_heap(obj.root) == True) :
		print("\n Max Heap Binary Tree \n", end = "")
	else :
		print(" Not a Max Heap Binary Tree \n", end = "")
	
	# Make A Binary Tree
	#     -----------------------
	#                17
	#              /   \
	#             15     16
	#            / \    / \
	#           9   7  8   10
	#          /     \       \
	#         6       2       20
	#                /
	#               1
	#     
	obj.root.right.right.right = Node(20)
	obj.inorder(obj.root)
	if (obj.is_max_heap(obj.root) == True) :
		print("\n Max Heap Binary Tree \n", end = "")
	else :
		print("\n Not a Max Heap Binary Tree \n", end = "")
	


if __name__ == "__main__":
	main()

Output

  6  9  15  7  1  2  17  8  16  10
 Max Heap Binary Tree
  6  9  15  7  1  2  17  8  16  10  20
 Not a Max Heap Binary Tree
# Ruby Program
# Check whether binary tree is form of max heap

# Structure of Binary Tree node
class Node 
	# Define the accessor and reader of class Node
	attr_reader :data, :left, :right
	attr_accessor :data, :left, :right
	# make a tree node
	def initialize(data) 
		 # assign field values
		self.data = data
		@left = nil
		@right = nil
	end
end

class MyHeap 
	# Define the accessor and reader of class MyHeap
    attr_reader :root
    attr_accessor :root
	def initialize() 
		@root = nil
	end
	 # Check that given binary tree is form of max heap or not
	def is_max_heap(root) 
		if (root != nil) 
			if (root.left != nil && root.left.data > root.data || root.right != nil && root.right.data > root.data) 
				return false
			end
			if (self.is_max_heap(root.left) == true && self.is_max_heap(root.right) == true) 
				return true
			end
			return false
		end
		return true
	end
	 # Display tree elements in order form
	def inorder(node) 
		if (node != nil) 
			self.inorder(node.left)
			 # Print node value

			print(" ", node.data)
			self.inorder(node.right)
		end
	end
end
def main() 
	obj = MyHeap.new()
	#  Make A Binary Tree
	#     -----------------------
	#                17
	#              /   \
	#             15     16
	#            / \    / \
	#           9   7  8   10
	#          /     \    
	#         6       2    
	#                /
	#               1
	#     
	 # Insertion of binary tree nodes
	obj.root = Node.new(17)
	obj.root.left = Node.new(15)
	obj.root.right = Node.new(16)
	obj.root.right.right = Node.new(10)
	obj.root.right.left = Node.new(8)
	obj.root.left.left = Node.new(9)
	obj.root.left.left.left = Node.new(6)
	obj.root.left.right = Node.new(7)
	obj.root.left.right.right = Node.new(2)
	obj.root.left.right.right.left = Node.new(1)
	obj.inorder(obj.root)
	if (obj.is_max_heap(obj.root) == true) 
		print("\n Max Heap Binary Tree \n")
	else 
		print(" Not a Max Heap Binary Tree \n")
	end
	#   Make A Binary Tree
	#     -----------------------
	#                17
	#              /   \
	#             15     16
	#            / \    / \
	#           9   7  8   10
	#          /     \       \
	#         6       2       20
	#                /
	#               1
	#     
	obj.root.right.right.right = Node.new(20)
	obj.inorder(obj.root)
	if (obj.is_max_heap(obj.root) == true) 
		print("\n Max Heap Binary Tree \n")
	else 
		print("\n Not a Max Heap Binary Tree \n")
	end
end


main()

Output

 6 9 15 7 1 2 17 8 16 10
 Max Heap Binary Tree 
 6 9 15 7 1 2 17 8 16 10 20
 Not a Max Heap Binary Tree 
/* 
  Scala Program
  Check whether binary tree is form of max heap
*/
//Structure of Binary Tree node
class Node(var data: Int,var left: Node,var right: Node) {
	//make a tree node
	def this(data: Int) {
		//assign field values
		this(data, null,null);
	}
} 
class MyHeap(var root: Node) {
	

	def this() {
		this(null);
	}
	//Check that given binary tree is form of max heap or not
	def is_max_heap(root: Node): Boolean = {
		if (root != null) {
			if (root.left != null && root.left.data > root.data || root.right != null && root.right.data > root.data) {
				return false;
			}
			if (this.is_max_heap(root.left) == true && this.is_max_heap(root.right) == true) {
				return true;
			}
			return false;
		}
		return true;
	}
	//Display tree elements in order form
	def inorder(node: Node): Unit = {
		if (node != null) {
			this.inorder(node.left);

			//Print node value
			print(" " + node.data);
			this.inorder(node.right);
		}
	}
}
object Main {
	def main(args: Array[String]): Unit = {
		val obj: MyHeap = new MyHeap();

		/*   Make A Binary Tree
		    -----------------------
		               17
		             /   \
		            15     16
		           / \    / \
		          9   7  8   10
		         /     \    
		        6       2    
		               /
		              1
		    */
		//Insertion of binary tree nodes
		obj.root = new Node(17);
		obj.root.left = new Node(15);
		obj.root.right = new Node(16);
		obj.root.right.right = new Node(10);
		obj.root.right.left = new Node(8);
		obj.root.left.left = new Node(9);
		obj.root.left.left.left = new Node(6);
		obj.root.left.right = new Node(7);
		obj.root.left.right.right = new Node(2);
		obj.root.left.right.right.left = new Node(1);
		obj.inorder(obj.root);

		if (obj.is_max_heap(obj.root) == true) {
			print("\n Max Heap Binary Tree \n");
		} else {
			print(" Not a Max Heap Binary Tree \n");
		}
		/*   Make A Binary Tree
		    -----------------------
		               17
		             /   \
		            15     16
		           / \    / \
		          9   7  8   10
		         /     \       \
		        6       2       20
		               /
		              1
		    */
		obj.root.right.right.right = new Node(20);
		obj.inorder(obj.root);

		if (obj.is_max_heap(obj.root) == true) {
			print("\n Max Heap Binary Tree \n");
		} else {
			print("\n Not a Max Heap Binary Tree \n");
		}
	}
}

Output

 6 9 15 7 1 2 17 8 16 10
 Max Heap Binary Tree
 6 9 15 7 1 2 17 8 16 10 20
 Not a Max Heap Binary Tree
/* 
  Swift Program
  Check whether binary tree is form of max heap
*/
//Structure of Binary Tree node
class Node {
	var data: Int;
	var left: Node?;
	var right: Node?;
	//make a tree node
	init(_ data: Int) {
		//assign field values
		self.data = data;
		self.left = nil;
		self.right = nil;
	}
}
class MyHeap {
	var root: Node?;
	init() {
		self.root = nil;
	}
	//Check that given binary tree is form of max heap or not
	func is_max_heap(_ root: Node?) -> Bool {
		if (root != nil) {
			if (root!.left != nil && root!.left!.data > root!.data || root!.right != nil && root!.right!.data > root!.data) {
				return false;
			}
			if (self.is_max_heap(root!.left) == true && self.is_max_heap(root!.right) == true) {
				return true;
			}
			return false;
		}
		return true;
	}
	//Display tree elements in order form
	func inorder(_ node: Node?) {
		if (node != nil) {
			self.inorder(node!.left);
			print(" ", node!.data, terminator: "");
			self.inorder(node!.right);
		}
	}
}
func main() {
	let obj: MyHeap = MyHeap();
	/*   Make A Binary Tree
	    -----------------------
	               17
	             /   \
	            15     16
	           / \    / \
	          9   7  8   10
	         /     \    
	        6       2    
	               /
	              1
	    */
	//Insertion of binary tree nodes
	obj.root = Node(17);
	obj.root!.left = Node(15);
	obj.root!.right = Node(16);
	obj.root!.right!.right = Node(10);
	obj.root!.right!.left = Node(8);
	obj.root!.left!.left = Node(9);
	obj.root!.left!.left!.left = Node(6);
	obj.root!.left!.right = Node(7);
	obj.root!.left!.right!.right = Node(2);
	obj.root!.left!.right!.right!.left = Node(1);
	obj.inorder(obj.root);
	if (obj.is_max_heap(obj.root) == true) {
		print("\n Max Heap Binary Tree \n", terminator: "");
	} else {
		print(" Not a Max Heap Binary Tree \n", terminator: "");
	}
	/*   Add 20
	    -----------------------
	               17
	             /   \
	            15     16
	           / \    / \
	          9   7  8   10
	         /     \       \
	        6       2       20
	               /
	              1
	 */
	obj.root!.right!.right!.right = Node(20);
	obj.inorder(obj.root);
	if (obj.is_max_heap(obj.root) == true) {
		print("\n Max Heap Binary Tree \n", terminator: "");
	} else {
		print("\n Not a Max Heap Binary Tree \n", terminator: "");
	}
}
main();

Output

  6  9  15  7  1  2  17  8  16  10
 Max Heap Binary Tree
  6  9  15  7  1  2  17  8  16  10  20
 Not a Max Heap Binary Tree


Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

New Comment







© 2021, kalkicode.com, All rights reserved