# Check whether a given binary tree is perfect or not

Here given code implementation process.

``````/*
C Program
+ Check whether a given binary tree is perfect or not
*/
#include<stdio.h>
#include<stdlib.h>
//structure of Binary Tree node
struct Node
{
int data;
struct Node*left,*right;
};

//Create a binary tree nodes and node fields (data,pointer)
//And returning the reference of newly nodes

struct Node* insert(int data)
{
//create dynamic memory to new binary tree node
struct Node*new_node=(struct Node*)malloc(sizeof(struct Node));
if(new_node!=NULL)
{
//set data and pointer values
new_node->data=data;
new_node->left=NULL; //Initially node left-pointer is NULL
new_node->right=NULL;//Initially node right-pointer is NULL
}else
{
printf("Memory Overflow\n");
exit(0); //Terminate program execution
}
//return reference
return new_node;

}
//Find the status of given binary tree is perfect or not
int perfect_bt(struct Node*root,int *height,int level)
{
if(root!=NULL)
{
if(root->left!=NULL
&& root->right ==NULL
|| root->left==NULL
&& root->right !=NULL)
{
return 0;
}

return (perfect_bt(root->left,height,level+1) &&
perfect_bt(root->right,height,level+1) );

}else
{
if(*height==-1)
{
*height=level-1;
}
else if(level-1!=*height)
{
//WHEN leaf node are not same
return 0;
}
return 1;

}
}

{
{
}
}
int main(){

struct Node*root=NULL;

/*  Make A Binary Tree
-----------------------
1
/   \
2     4
/ \   / \
3   7 6   5

*/
//Insertion of binary tree nodes
root               =insert(1);
root->left         =insert(2);
root->left->left   =insert(3);

root->right        =insert(4);
root->right->right =insert(5);
root->right->left  =insert(6);
root->left->right   =insert(7);

int height=-1,result=0;
inorder(root);

result=perfect_bt(root,&height,0);

if(result==1)
{
printf("\n Perfect BT\n");
}
else
{
printf("\n Not Perfect BT\n");
}
return 0;
}```
```

#### Output

``````  3  2  7  1  6  4  5
Perfect BT``````
``````/*
C++ Program
Check whether a given binary tree is perfect or not
*/
#include <iostream>

using namespace std;
class Node {
public:
int data;
Node *left, *right;
Node(int value) {
this->data = value;
this->left = NULL;
this->right = NULL;
}
};
class BinaryTree {
public:
Node *root;
int height;
BinaryTree() {
this->root = NULL;
this->height = -1;
}
void inorder(Node *node) {
if (node != NULL) {
this->inorder(node->left);
cout << "  " << node->data;
this->inorder(node->right);
}
}
bool is_perfect_bt(Node *head, int level) {
return false;
}
} else {
if (this->height == -1) {
this->height = level - 1;
} else
if (level - 1 != this->height) {
return false;
}
return true;
}
}
bool perfect_bt() {
this->height = -1;
return this->is_perfect_bt(this->root, 0);
}
};

int main() {
BinaryTree obj;
/*  Make A Binary Tree
-----------------------
1
/   \
2     4
/ \   / \
3   7 6   5

*/
obj.root = new Node(1);
obj.root->left = new Node(2);
obj.root->left->left = new Node(3);
obj.root->right = new Node(4);
obj.root->right->right = new Node(5);
obj.root->right->left = new Node(6);
obj.root->left->right = new Node(7);
obj.inorder(obj.root);
if (obj.perfect_bt() == true) {
cout << "\n Perfect BT\n";
} else {
cout << "\n Not Perfect BT\n";
}
return 0;
}```
```

#### Output

``````  3  2  7  1  6  4  5
Perfect BT``````
``````/*
Java Program
Check whether a given binary tree is perfect or not
*/

//Class of Binary Tree node
class Node {

public int data;
public Node left, right;
//Make a tree node
public Node(int value) {
//Assign field values
data = value;
left = null;
right = null;
}
}

public class BinaryTree {

public Node root;

public int height;

public BinaryTree() {
//Set initial initial values
root = null;
height = -1;
}
//Display tree element inorder form
public void inorder(Node node) {

if (node != null) {

inorder(node.left);
//Print node value
System.out.print("  " + node.data);
inorder(node.right);
}
}
//Find the status of given binary tree is perfect or not
public boolean is_perfect_bt(Node head, int level) {
return false;
}

return (is_perfect_bt(head.left, level + 1) &&

} else {
if (height == -1) {
height = level - 1;
} else if (level - 1 != height) {
//WHEN leaf node are not same
return false;
}
return true;

}
}
public boolean perfect_bt() {
this.height = -1;

return is_perfect_bt(root, 0);
}
public static void main(String[] args) {
//Make object of Binary Tree
BinaryTree obj = new BinaryTree();
/* Make A Binary Tree
-----------------------
1
/   \
2     4
/ \   / \
3   7 6   5

*/
//Binary tree nodes
obj.root = new Node(1);
obj.root.left = new Node(2);
obj.root.left.left = new Node(3);

obj.root.right = new Node(4);
obj.root.right.right = new Node(5);
obj.root.right.left = new Node(6);
obj.root.left.right = new Node(7);
obj.inorder(obj.root);
if (obj.perfect_bt()==true) {
System.out.print("\n Perfect BT\n");
} else {
System.out.print("\n Not Perfect BT\n");
}

}
}```
```

#### Output

``````  3  2  7  1  6  4  5
Perfect BT``````
``````/*
C# Program
Check whether a given binary tree is perfect or not
*/
using System;
//Class of Binary Tree node
public class Node {

public int data;
public Node left, right;
//Make a tree node
public Node(int value) {
//Assign field values
data = value;
left = null;
right = null;
}
}

public class BinaryTree {

public Node root;

public int height;

public BinaryTree() {
//Set initial initial values
root = null;
height = -1;
}
//Display tree element inorder form
public void inorder(Node node) {

if (node != null) {

inorder(node.left);
//Print node value
Console.Write("  " + node.data);
inorder(node.right);
}
}
//Find the status of given binary tree is perfect or not
public Boolean is_perfect_bt(Node head, int level) {
return false;
}

return (is_perfect_bt(head.left, level + 1) &&

} else {
if (height == -1) {
height = level - 1;
} else if (level - 1 != height) {
//WHEN leaf node are not same
return false;
}
return true;

}
}
public Boolean perfect_bt() {
this.height = -1;

return is_perfect_bt(root, 0);
}
public static void Main(String[] args) {
//Make object of Binary Tree
BinaryTree obj = new BinaryTree();
/* Make A Binary Tree
-----------------------
1
/   \
2     4
/ \   / \
3   7 6   5

*/
//Binary tree nodes
obj.root = new Node(1);
obj.root.left = new Node(2);
obj.root.left.left = new Node(3);

obj.root.right = new Node(4);
obj.root.right.right = new Node(5);
obj.root.right.left = new Node(6);
obj.root.left.right = new Node(7);
obj.inorder(obj.root);
if (obj.perfect_bt()==true) {
Console.Write("\n Perfect BT\n");
} else {
Console.Write("\n Not Perfect BT\n");
}

}
}```
```

#### Output

``````  3  2  7  1  6  4  5
Perfect BT``````
``````# Python Program
# Check whether a given binary tree is perfect or not
class Node :
def __init__(self, value) :
self.data = value
self.left = None
self.right = None

class BinaryTree :
def __init__(self) :
self.root = None
self.height = -1

def inorder(self, node) :
if (node != None) :
self.inorder(node.left)
print(node.data,end=" ")
self.inorder(node.right)

return False

else :
if (self.height == -1) :
self.height = level - 1
elif (level - 1 != self.height) :
return False

return True

def perfect_bt(self) :
self.height = -1
return self.is_perfect_bt(self.root, 0)

def main() :
obj = BinaryTree()
#  Make A Binary Tree
#           1
#         /   \
#        2     4
#       / \   / \
#      3   7 6   5
#
obj.root = Node(1)
obj.root.left = Node(2)
obj.root.left.left = Node(3)
obj.root.right = Node(4)
obj.root.right.right = Node(5)
obj.root.right.left = Node(6)
obj.root.left.right = Node(7)
obj.inorder(obj.root)
if (obj.perfect_bt() == True) :
print("\n Perfect BT\n")
else :
print("\n Not Perfect BT\n")

if __name__ == "__main__":
main()```
```

#### Output

``````  3  2  7  1  6  4  5
Perfect BT``````
``````# Ruby Program
# Check whether a given binary tree is perfect or not
class Node
attr_accessor :data, :left, :right
def initialize(value)
@data = value
@left = nil
@right = nil
end
end

class BinaryTree
attr_accessor :root, :height
def initialize()
@root = nil
@height = -1
end
def inorder(node)
if (node != nil)
self.inorder(node.left)
print("  ", node.data)
self.inorder(node.right)
end
end
return false
end
else
if (@height == -1)
@height = level - 1
elsif (level - 1 != @height)
return false
end
return true
end
end
def perfect_bt()
self.height = -1
return self.is_perfect_bt(@root, 0)
end
end

def main()
obj = BinaryTree.new()
#  Make A Binary Tree
#           1
#         /   \
#        2     4
#       / \   / \
#      3   7 6   5
#
obj.root = Node.new(1)
obj.root.left = Node.new(2)
obj.root.left.left = Node.new(3)
obj.root.right = Node.new(4)
obj.root.right.right = Node.new(5)
obj.root.right.left = Node.new(6)
obj.root.left.right = Node.new(7)
obj.inorder(obj.root)
if (obj.perfect_bt() == true)
print("\n Perfect BT\n")
else
print("\n Not Perfect BT\n")
end
end
main()
```
```

#### Output

``````  3  2  7  1  6  4  5
Perfect BT``````
``````<?php
/*
Php Program
Check whether a given binary tree is perfect or not
*/
class Node {
public \$data;
public \$left;
public \$right;

function __construct(\$value) {
\$this->data = \$value;
\$this->left = null;
\$this->right = null;
}
}
class BinaryTree {
public \$root;
public \$height;

function __construct() {
\$this->root = null;
\$this->height = -1;
}
public  function inorder(\$node) {
if (\$node != null) {
\$this->inorder(\$node->left);
echo("  ". \$node->data);
\$this->inorder(\$node->right);
}
}
return false;
}
} else {
if (\$this->height == -1) {
\$this->height = \$level - 1;
} else
if (\$level - 1 != \$this->height) {
return false;
}
return true;
}
}
public  function perfect_bt() {
\$this->height = -1;
return \$this->is_perfect_bt(\$this->root, 0);
}
}

function main() {
\$obj = new BinaryTree();
/*  Make A Binary Tree
-----------------------
1
/   \
2     4
/ \   / \
3   7 6   5

*/
\$obj->root = new Node(1);
\$obj->root->left = new Node(2);
\$obj->root->left->left = new Node(3);
\$obj->root->right = new Node(4);
\$obj->root->right->right = new Node(5);
\$obj->root->right->left = new Node(6);
\$obj->root->left->right = new Node(7);
\$obj->inorder(\$obj->root);
if (\$obj->perfect_bt() == true) {
echo("\n Perfect BT\n");
} else {
echo("\n Not Perfect BT\n");
}
}
main();```
```

#### Output

``````  3  2  7  1  6  4  5
Perfect BT``````
``````/*
Node JS Program
Check whether a given binary tree is perfect or not
*/
class Node {

constructor(value) {
this.data = value;
this.left = null;
this.right = null;
}
}
class BinaryTree {

constructor() {
this.root = null;
this.height = -1;
}
inorder(node) {
if (node != null) {
this.inorder(node.left);
process.stdout.write("  " + node.data);
this.inorder(node.right);
}
}
return false;
}
} else {
if (this.height == -1) {
this.height = level - 1;
} else
if (level - 1 != this.height) {
return false;
}
return true;
}
}
perfect_bt() {
this.height = -1;
return this.is_perfect_bt(this.root, 0);
}
}

function main() {
var obj = new BinaryTree();
/*  Make A Binary Tree
---------------------
1
/   \
2     4
/ \   / \
3   7 6   5

*/
obj.root = new Node(1);
obj.root.left = new Node(2);
obj.root.left.left = new Node(3);
obj.root.right = new Node(4);
obj.root.right.right = new Node(5);
obj.root.right.left = new Node(6);
obj.root.left.right = new Node(7);
obj.inorder(obj.root);
if (obj.perfect_bt() == true) {
process.stdout.write("\n Perfect BT\n");
} else {
process.stdout.write("\n Not Perfect BT\n");
}
}
main();```
```

#### Output

``````  3  2  7  1  6  4  5
Perfect BT``````
``````/*
Swift 4 Program
Check whether a given binary tree is perfect or not
*/
class Node {
var data: Int;
var left: Node? ;
var right: Node? ;

init(_ value: Int) {
self.data = value;
self.left = nil;
self.right = nil;
}
}
class BinaryTree {
var root: Node? ;
var height: Int;
init() {
self.root = nil;
self.height = -1;
}
func inorder(_ node: Node? ) {
if (node != nil) {
self.inorder(node!.left);
print(node!.data, terminator:"  ");
self.inorder(node!.right);
}
}
func is_perfect_bt(_ head: Node? , _ level : Int) -> Bool {
return false;
}
} else {
if (self.height == -1) {
self.height = level - 1;
} else
if (level - 1 != self.height) {
return false;
}
return true;
}
}
func perfect_bt() -> Bool {
self.height = -1;
return self.is_perfect_bt(self.root, 0);
}
}
func main() {
let obj: BinaryTree = BinaryTree();
/*  Make A Binary Tree
---------------------
1
/   \
2     4
/ \   / \
3   7 6   5

*/
obj.root = Node(1);
obj.root!.left = Node(2);
obj.root!.left!.left = Node(3);
obj.root!.right = Node(4);
obj.root!.right!.right = Node(5);
obj.root!.right!.left = Node(6);
obj.root!.left!.right = Node(7);
obj.inorder(obj.root);
if (obj.perfect_bt() == true) {
print("\n Perfect BT\n");
} else {
print("\n Not Perfect BT\n");
}
}
main();```
```

#### Output

``````  3  2  7  1  6  4  5
Perfect BT``````

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.