Posted on by Kalkicode
Code Binary Tree

# Check if a given Binary Tree is Sumtree

Here given code implementation process.

``````/*
C Program
Check if a given Binary Tree is Sumtree
*/
#include <stdio.h>
#include <stdlib.h>

//Binary Tree node
struct Node
{
int data;
struct Node *left, *right;
};

//This is creating a binary tree node and return new node
struct Node *get_node(int data)
{
// Create dynamic node
struct Node *new_node = (struct Node *) malloc(sizeof(struct Node));
if (new_node != NULL)
{
//Set data and pointer values
new_node->data = data;
new_node->left = NULL;
new_node->right = NULL;
}
else
{
//This is indicates, segmentation fault or memory overflow problem
printf("Memory Overflow\n");
}
//return new node
return new_node;
}

//Display pre order elements
void print_preorder(struct Node *node)
{
if (node != NULL)
{
//Print node value
printf("  %d", node->data);
print_preorder(node->left);
print_preorder(node->right);
}
}

//Handles the request of display the element of tree
void print_tree(struct Node *root)
{
if (root == NULL)
{
return;
}
// Display tree elements in three formats
printf("\n Preorder : ");
print_preorder(root);
printf("\n");
}

//Determine whether given binary tree is subtree or not
int check_sum_tree(struct Node *node, int *status)
{
if (node == NULL || *status == 0)
{
return 0;
}
else if (node->left == NULL && node->right == NULL)
{
return node->data;
}
else
{
//recursively calculate sum of left and right subtree
int a = check_sum_tree(node->left, status);
int b = check_sum_tree(node->right, status);
if ( *status == 1)
{
if ((a + b) == node->data)
{
return (a + b) *2;
}
else
{
// violation of subtree sum
*status = 0;
}
}
return 0;
}
}

// Handles the request of to find sum tree exist in binary tree
void is_sum_tree(struct Node *root)
{
if (root == NULL)
{
return;
}
else
{
int status = 1;
print_tree(root);
check_sum_tree(root, & status);
if (status == 1)
{
printf(" Is Sum Tree \n");
}
else
{
printf(" Is Not Sum Tree \n");
}
}
}
int main()
{
struct Node *root1 = NULL;
/*
Constructing binary tree
-----------------------
96
/  \
/    \
37     11
/ \    /  \
18  1  5    6
\
9
/  \
3    6
*/
root1 = get_node(96);
root1->left = get_node(37);
root1->left->right = get_node(1);
root1->right = get_node(11);
root1->right->right = get_node(6);
root1->right->left = get_node(5);
root1->left->left = get_node(18);
root1->left->left->right = get_node(9);
root1->left->left->right->right = get_node(6);
root1->left->left->right->left = get_node(3);
is_sum_tree(root1);
struct Node *root2 = NULL;
/*
Constructing binary tree
-----------------------
36
/  \
/    \
2      17
/ \    /  \
1   1  5    6

*/
root2 = get_node(36);
root2->left = get_node(2);
root2->left->right = get_node(1);
root2->right = get_node(17);
root2->right->right = get_node(6);
root2->right->left = get_node(5);
root2->left->left = get_node(1);
/*
When subtree sum is not equal to parent node
----------------------------------------
17 => problem here
/  \
5    6
*/
is_sum_tree(root2);
return 0;
}``````

#### Output

`````` Preorder :   96  37  18  9  3  6  1  11  5  6
Is Sum Tree

Preorder :   36  2  1  1  17  5  6
Is Not Sum Tree``````
``````/*
Java Program
Check if a given Binary Tree is Sumtree
*/
// Binary Tree node
class Node
{
public int data;
public Node left;
public Node right;
public Node(int data)
{
// Set node value
this.data = data;
this.left = null;
this.right = null;
}
}
class Result
{
public boolean status;
public Result()
{
this.status = true;
}
}
//Define Binary Tree
public class BinaryTree
{
public Node root;
public BinaryTree()
{
//Set root of tree
this.root = null;
}
//Display pre order elements
public void print_preorder(Node node)
{
if (node != null)
{
//Print node value
System.out.print(" " + node.data);
print_preorder(node.left);
print_preorder(node.right);
}
}
//Handles the request of display the element of tree
public void print_tree(Node root)
{
if (root == null)
{
return;
}
// Display tree elements in three formats
System.out.print("\n Preorder : ");
print_preorder(root);
System.out.print("\n");
}
//Determine whether given binary tree is subtree or not
public int check_sum_tree(Node node, Result output)
{
if (node == null || output.status == false)
{
return 0;
}
else if (node.left == null && node.right == null)
{
return node.data;
}
else
{
//recursively calculate sum of left and right subtree
int a = check_sum_tree(node.left, output);
int b = check_sum_tree(node.right, output);
if (output.status == true)
{
if ((a + b) == node.data)
{
return (a + b) * 2;
}
else
{
// violation of subtree sum
output.status = false;
}
}
return 0;
}
}
// Handles the request of to find sum tree exist in binary tree
public void is_sum_tree()
{
if (this.root == null)
{
return;
}
else
{
Result output = new Result();
this.print_tree(this.root);
this.check_sum_tree(this.root, output);
if (output.status == true)
{
System.out.print(" Is Sum Tree \n");
}
else
{
System.out.print(" Is Not Sum Tree \n");
}
}
}
public static void main(String[] args)
{
//Create tree object
BinaryTree tree1 = new BinaryTree();
BinaryTree tree2 = new BinaryTree();
/*
Constructing binary tree
-----------------------
96
/  \
/    \
37     11
/ \    /  \
18  1  5    6
\
9
/  \
3    6
*/
tree1.root = new Node(96);
tree1.root.left = new Node(37);
tree1.root.left.right = new Node(1);
tree1.root.right = new Node(11);
tree1.root.right.right = new Node(6);
tree1.root.right.left = new Node(5);
tree1.root.left.left = new Node(18);
tree1.root.left.left.right = new Node(9);
tree1.root.left.left.right.right = new Node(6);
tree1.root.left.left.right.left = new Node(3);
tree1.is_sum_tree();
/*
Constructing binary tree
-----------------------
36
/  \
/    \
2      17
/ \    /  \
1   1  5    6

*/
tree2.root = new Node(36);
tree2.root.left = new Node(2);
tree2.root.left.right = new Node(1);
tree2.root.right = new Node(17);
tree2.root.right.right = new Node(6);
tree2.root.right.left = new Node(5);
tree2.root.left.left = new Node(1);
/*
When subtree sum is not equal to parent node
----------------------------------------
17 => problem here
/  \
5    6

*/
tree2.is_sum_tree();
}
}``````

#### Output

`````` Preorder :  96 37 18 9 3 6 1 11 5 6
Is Sum Tree

Preorder :  36 2 1 1 17 5 6
Is Not Sum Tree``````
``````// Include header file
#include <iostream>
using namespace std;

/*
C++ Program
Check if a given Binary Tree is Sumtree
*/

//  Binary Tree node
class Node
{
public:
int data;
Node *left;
Node *right;
Node(int data)
{
//  Set node value
this->data = data;
this->left = NULL;
this->right = NULL;
}
};
class Result
{
public:
bool status;
Result()
{
this->status = true;
}
};
// Define Binary Tree
class BinaryTree
{
public: Node *root;
BinaryTree()
{
// Set root of tree
this->root = NULL;
}
// Display pre order elements
void print_preorder(Node *node)
{
if (node != NULL)
{
// Print node value
cout << " " << node->data;
this->print_preorder(node->left);
this->print_preorder(node->right);
}
}
// Handles the request of display the element of tree
void print_tree(Node *root)
{
if (root == NULL)
{
return;
}
//  Display tree elements in three formats
cout << "\n Preorder : ";
this->print_preorder(root);
cout << "\n";
}
// Determine whether given binary tree is subtree or not
int check_sum_tree(Node *node, Result *output)
{
if (node == NULL || output->status == false)
{
return 0;
}
else if (node->left == NULL && node->right == NULL)
{
return node->data;
}
else
{
// recursively calculate sum of left and right subtree
int a = this->check_sum_tree(node->left, output);
int b = this->check_sum_tree(node->right, output);
if (output->status == true)
{
if ((a + b) == node->data)
{
return (a + b) *2;
}
else
{
//  violation of subtree sum
output->status = false;
}
}
return 0;
}
}
//  Handles the request of to find sum tree exist in binary tree
void is_sum_tree()
{
if (this->root == NULL)
{
return;
}
else
{
Result *output = new Result();
this->print_tree(this->root);
this->check_sum_tree(this->root, output);
if (output->status == true)
{
cout << " Is Sum Tree \n";
}
else
{
cout << " Is Not Sum Tree \n";
}
}
}
};
int main()
{
// Create tree object
BinaryTree tree1 = BinaryTree();
BinaryTree tree2 = BinaryTree();
/*
Constructing binary tree
-----------------------
96
/  \
/    \
37     11
/ \    /  \
18  1  5    6
\
9
/  \
3    6
*/
tree1.root = new Node(96);
tree1.root->left = new Node(37);
tree1.root->left->right = new Node(1);
tree1.root->right = new Node(11);
tree1.root->right->right = new Node(6);
tree1.root->right->left = new Node(5);
tree1.root->left->left = new Node(18);
tree1.root->left->left->right = new Node(9);
tree1.root->left->left->right->right = new Node(6);
tree1.root->left->left->right->left = new Node(3);
tree1.is_sum_tree();
/*
Constructing binary tree
-----------------------
36
/  \
/    \
2      17
/ \    /  \
1   1  5    6

*/
tree2.root = new Node(36);
tree2.root->left = new Node(2);
tree2.root->left->right = new Node(1);
tree2.root->right = new Node(17);
tree2.root->right->right = new Node(6);
tree2.root->right->left = new Node(5);
tree2.root->left->left = new Node(1);
/*
When subtree sum is not equal to parent node
----------------------------------------
17 => problem here
/  \
5    6

*/
tree2.is_sum_tree();
return 0;
}``````

#### Output

`````` Preorder :  96 37 18 9 3 6 1 11 5 6
Is Sum Tree

Preorder :  36 2 1 1 17 5 6
Is Not Sum Tree``````
``````// Include namespace system
using System;

/*
C# Program
Check if a given Binary Tree is Sumtree
*/

//  Binary Tree node
public class Node
{
public int data;
public Node left;
public Node right;
public Node(int data)
{
//  Set node value
this.data = data;
this.left = null;
this.right = null;
}
}
public class Result
{
public Boolean status;
public Result()
{
this.status = true;
}
}
// Define Binary Tree
public class BinaryTree
{
public Node root;
public BinaryTree()
{
// Set root of tree
this.root = null;
}
// Display pre order elements
public void print_preorder(Node node)
{
if (node != null)
{
// Print node value
Console.Write(" " + node.data);
print_preorder(node.left);
print_preorder(node.right);
}
}
// Handles the request of display the element of tree
public void print_tree(Node root)
{
if (root == null)
{
return;
}
//  Display tree elements in three formats
Console.Write("\n Preorder : ");
print_preorder(root);
Console.Write("\n");
}
// Determine whether given binary tree is subtree or not
public int check_sum_tree(Node node, Result output)
{
if (node == null || output.status == false)
{
return 0;
}
else if (node.left == null && node.right == null)
{
return node.data;
}
else
{
// recursively calculate sum of left and right subtree
int a = check_sum_tree(node.left, output);
int b = check_sum_tree(node.right, output);
if (output.status == true)
{
if ((a + b) == node.data)
{
return (a + b) * 2;
}
else
{
//  violation of subtree sum
output.status = false;
}
}
return 0;
}
}
//  Handles the request of to find sum tree exist in binary tree
public void is_sum_tree()
{
if (this.root == null)
{
return;
}
else
{
Result output = new Result();
this.print_tree(this.root);
this.check_sum_tree(this.root, output);
if (output.status == true)
{
Console.Write(" Is Sum Tree \n");
}
else
{
Console.Write(" Is Not Sum Tree \n");
}
}
}
public static void Main(String[] args)
{
// Create tree object
BinaryTree tree1 = new BinaryTree();
BinaryTree tree2 = new BinaryTree();
/*
Constructing binary tree
-----------------------
96
/  \
/    \
37     11
/ \    /  \
18  1  5    6
\
9
/  \
3    6
*/
tree1.root = new Node(96);
tree1.root.left = new Node(37);
tree1.root.left.right = new Node(1);
tree1.root.right = new Node(11);
tree1.root.right.right = new Node(6);
tree1.root.right.left = new Node(5);
tree1.root.left.left = new Node(18);
tree1.root.left.left.right = new Node(9);
tree1.root.left.left.right.right = new Node(6);
tree1.root.left.left.right.left = new Node(3);
tree1.is_sum_tree();
/*
Constructing binary tree
-----------------------
36
/  \
/    \
2      17
/ \    /  \
1   1  5    6

*/
tree2.root = new Node(36);
tree2.root.left = new Node(2);
tree2.root.left.right = new Node(1);
tree2.root.right = new Node(17);
tree2.root.right.right = new Node(6);
tree2.root.right.left = new Node(5);
tree2.root.left.left = new Node(1);
/*
When subtree sum is not equal to parent node
----------------------------------------
17 => problem here
/  \
5    6

*/
tree2.is_sum_tree();
}
}``````

#### Output

`````` Preorder :  96 37 18 9 3 6 1 11 5 6
Is Sum Tree

Preorder :  36 2 1 1 17 5 6
Is Not Sum Tree``````
``````<?php
/*
Php Program
Check if a given Binary Tree is Sumtree
*/

//  Binary Tree node
class Node
{
public \$data;
public \$left;
public \$right;

function __construct(\$data)
{
//  Set node value
\$this->data = \$data;
\$this->left = null;
\$this->right = null;
}
}
class Result
{
public \$status;

function __construct()
{
\$this->status = true;
}
}
// Define Binary Tree
class BinaryTree
{
public \$root;

function __construct()
{
// Set root of tree
\$this->root = null;
}
// Display pre order elements
public	function print_preorder(\$node)
{
if (\$node != null)
{
// Print node value
echo " ". \$node->data;
\$this->print_preorder(\$node->left);
\$this->print_preorder(\$node->right);
}
}
// Handles the request of display the element of tree
public	function print_tree(\$root)
{
if (\$root == null)
{
return;
}
//  Display tree elements in three formats
echo "\n Preorder : ";
\$this->print_preorder(\$root);
echo "\n";
}
// Determine whether given binary tree is subtree or not
public	function check_sum_tree(\$node, \$output)
{
if (\$node == null || \$output->status == false)
{
return 0;
}
else if (\$node->left == null && \$node->right == null)
{
return \$node->data;
}
else
{
// recursively calculate sum of left and right subtree
\$a = \$this->check_sum_tree(\$node->left, \$output);
\$b = \$this->check_sum_tree(\$node->right, \$output);
if (\$output->status == true)
{
if ((\$a + \$b) == \$node->data)
{
return (\$a + \$b) * 2;
}
else
{
//  violation of subtree sum
\$output->status = false;
}
}
return 0;
}
}
//  Handles the request of to find sum tree exist in binary tree
public	function is_sum_tree()
{
if (\$this->root == null)
{
return;
}
else
{
\$output = new Result();
\$this->print_tree(\$this->root);
\$this->check_sum_tree(\$this->root, \$output);
if (\$output->status == true)
{
echo " Is Sum Tree \n";
}
else
{
echo " Is Not Sum Tree \n";
}
}
}
}

function main()
{
// Create tree object
\$tree1 = new BinaryTree();
\$tree2 = new BinaryTree();
/*
Constructing binary tree
-----------------------
96
/  \
/    \
37     11
/ \    /  \
18  1  5    6
\
9
/  \
3    6
*/
\$tree1->root = new Node(96);
\$tree1->root->left = new Node(37);
\$tree1->root->left->right = new Node(1);
\$tree1->root->right = new Node(11);
\$tree1->root->right->right = new Node(6);
\$tree1->root->right->left = new Node(5);
\$tree1->root->left->left = new Node(18);
\$tree1->root->left->left->right = new Node(9);
\$tree1->root->left->left->right->right = new Node(6);
\$tree1->root->left->left->right->left = new Node(3);
\$tree1->is_sum_tree();
/*
Constructing binary tree
-----------------------
36
/  \
/    \
2      17
/ \    /  \
1   1  5    6

*/
\$tree2->root = new Node(36);
\$tree2->root->left = new Node(2);
\$tree2->root->left->right = new Node(1);
\$tree2->root->right = new Node(17);
\$tree2->root->right->right = new Node(6);
\$tree2->root->right->left = new Node(5);
\$tree2->root->left->left = new Node(1);
/*
When subtree sum is not equal to parent node
----------------------------------------
17 => problem here
/  \
5    6

*/
\$tree2->is_sum_tree();
}
main();``````

#### Output

`````` Preorder :  96 37 18 9 3 6 1 11 5 6
Is Sum Tree

Preorder :  36 2 1 1 17 5 6
Is Not Sum Tree``````
``````/*
Node Js Program
Check if a given Binary Tree is Sumtree
*/

//  Binary Tree node
class Node
{
constructor(data)
{
//  Set node value
this.data = data;
this.left = null;
this.right = null;
}
}
class Result
{
constructor()
{
this.status = true;
}
}
// Define Binary Tree
class BinaryTree
{
constructor()
{
// Set root of tree
this.root = null;
}
// Display pre order elements
print_preorder(node)
{
if (node != null)
{
// Print node value
process.stdout.write(" " + node.data);
this.print_preorder(node.left);
this.print_preorder(node.right);
}
}
// Handles the request of display the element of tree
print_tree(root)
{
if (root == null)
{
return;
}
//  Display tree elements in three formats
process.stdout.write("\n Preorder : ");
this.print_preorder(root);
process.stdout.write("\n");
}
// Determine whether given binary tree is subtree or not
check_sum_tree(node, output)
{
if (node == null || output.status == false)
{
return 0;
}
else if (node.left == null && node.right == null)
{
return node.data;
}
else
{
// recursively calculate sum of left and right subtree
var a = this.check_sum_tree(node.left, output);
var b = this.check_sum_tree(node.right, output);
if (output.status == true)
{
if ((a + b) == node.data)
{
return (a + b) * 2;
}
else
{
//  violation of subtree sum
output.status = false;
}
}
return 0;
}
}
//  Handles the request of to find sum tree exist in binary tree
is_sum_tree()
{
if (this.root == null)
{
return;
}
else
{
var output = new Result();
this.print_tree(this.root);
this.check_sum_tree(this.root, output);
if (output.status == true)
{
process.stdout.write(" Is Sum Tree \n");
}
else
{
process.stdout.write(" Is Not Sum Tree \n");
}
}
}
}

function main()
{
// Create tree object
var tree1 = new BinaryTree();
var tree2 = new BinaryTree();
/*
Constructing binary tree
-----------------------
96
/  \
/    \
37     11
/ \    /  \
18  1  5    6
\
9
/  \
3    6
*/
tree1.root = new Node(96);
tree1.root.left = new Node(37);
tree1.root.left.right = new Node(1);
tree1.root.right = new Node(11);
tree1.root.right.right = new Node(6);
tree1.root.right.left = new Node(5);
tree1.root.left.left = new Node(18);
tree1.root.left.left.right = new Node(9);
tree1.root.left.left.right.right = new Node(6);
tree1.root.left.left.right.left = new Node(3);
tree1.is_sum_tree();
/*
Constructing binary tree
-----------------------
36
/  \
/    \
2      17
/ \    /  \
1   1  5    6

*/
tree2.root = new Node(36);
tree2.root.left = new Node(2);
tree2.root.left.right = new Node(1);
tree2.root.right = new Node(17);
tree2.root.right.right = new Node(6);
tree2.root.right.left = new Node(5);
tree2.root.left.left = new Node(1);
/*
When subtree sum is not equal to parent node
----------------------------------------
17 => problem here
/  \
5    6

*/
tree2.is_sum_tree();
}
main();``````

#### Output

`````` Preorder :  96 37 18 9 3 6 1 11 5 6
Is Sum Tree

Preorder :  36 2 1 1 17 5 6
Is Not Sum Tree``````
``````#     Python 3 Program
#     Check if a given Binary Tree is Sumtree

#  Binary Tree node
class Node :

def __init__(self, data) :
#  Set node value
self.data = data
self.left = None
self.right = None

class Result :

def __init__(self) :
self.status = True

# Define Binary Tree
class BinaryTree :

def __init__(self) :
# Set root of tree
self.root = None

# Display pre order elements
def print_preorder(self, node) :
if (node != None) :
# Print node value
print(" ", node.data, end = "")
self.print_preorder(node.left)
self.print_preorder(node.right)

# Handles the request of display the element of tree
def print_tree(self, root) :
if (root == None) :
return

#  Display tree elements in three formats
print("\n Preorder : ", end = "")
self.print_preorder(root)
print("\n", end = "")

# Determine whether given binary tree is subtree or not
def check_sum_tree(self, node, output) :
if (node == None or output.status == False) :
return 0

elif(node.left == None and node.right == None) :
return node.data
else :
# recursively calculate sum of left and right subtree
a = self.check_sum_tree(node.left, output)
b = self.check_sum_tree(node.right, output)
if (output.status == True) :
if ((a + b) == node.data) :
return (a + b) * 2
else :
#  violation of subtree sum
output.status = False

return 0

#  Handles the request of to find sum tree exist in binary tree
def is_sum_tree(self) :
if (self.root == None) :
return
else :
output = Result()
self.print_tree(self.root)
self.check_sum_tree(self.root, output)
if (output.status == True) :
print(" Is Sum Tree \n", end = "")
else :
print(" Is Not Sum Tree \n", end = "")

def main() :
# Create tree object
tree1 = BinaryTree()
tree2 = BinaryTree()
#
# 		Constructing binary tree
# 		-----------------------
# 		         96
# 		        /  \
# 		       /    \
# 		     37     11
# 		     / \    /  \
# 		    18  1  5    6
# 		     \
# 		      9
# 		     /  \
# 		    3    6
#

tree1.root = Node(96)
tree1.root.left = Node(37)
tree1.root.left.right = Node(1)
tree1.root.right = Node(11)
tree1.root.right.right = Node(6)
tree1.root.right.left = Node(5)
tree1.root.left.left = Node(18)
tree1.root.left.left.right = Node(9)
tree1.root.left.left.right.right = Node(6)
tree1.root.left.left.right.left = Node(3)
tree1.is_sum_tree()
#
# 		Constructing binary tree
# 		-----------------------
# 		     36
# 		    /  \
# 		   /    \
# 		  2      17
# 		 / \    /  \
# 		1   1  5    6
#
#

tree2.root = Node(36)
tree2.root.left = Node(2)
tree2.root.left.right = Node(1)
tree2.root.right = Node(17)
tree2.root.right.right = Node(6)
tree2.root.right.left = Node(5)
tree2.root.left.left = Node(1)
#
# 		When subtree sum is not equal to parent node
# 		----------------------------------------
# 		  17 => problem here
# 		 /  \
# 		5    6
#

tree2.is_sum_tree()

if __name__ == "__main__": main()``````

#### Output

`````` Preorder :   96  37  18  9  3  6  1  11  5  6
Is Sum Tree

Preorder :   36  2  1  1  17  5  6
Is Not Sum Tree``````
``````#  Ruby Program
#  Check if a given Binary Tree is Sumtree

#  Binary Tree node
class Node
# Define the accessor and reader of class Node
attr_accessor :data, :left, :right

def initialize(data)
#  Set node value
self.data = data
self.left = nil
self.right = nil
end

end

class Result
# Define the accessor and reader of class Result
attr_accessor :status

def initialize()
self.status = true
end

end

# Define Binary Tree
class BinaryTree
# Define the accessor and reader of class BinaryTree
attr_accessor :root

def initialize()
# Set root of tree
self.root = nil
end

# Display pre order elements
def print_preorder(node)
if (node != nil)
# Print node value
print(" ", node.data)
self.print_preorder(node.left)
self.print_preorder(node.right)
end

end

# Handles the request of display the element of tree
def print_tree(root)
if (root == nil)
return
end

#  Display tree elements in three formats
print("\n Preorder : ")
self.print_preorder(root)
print("\n")
end

# Determine whether given binary tree is subtree or not
def check_sum_tree(node, output)
if (node == nil || output.status == false)
return 0
elsif(node.left == nil && node.right == nil)
return node.data
else
# recursively calculate sum of left and right subtree
a = self.check_sum_tree(node.left, output)
b = self.check_sum_tree(node.right, output)
if (output.status == true)
if ((a + b) == node.data)
return (a + b) * 2
else
#  violation of subtree sum
output.status = false
end

end

return 0
end

end

#  Handles the request of to find sum tree exist in binary tree
def is_sum_tree()
if (self.root == nil)
return
else
output = Result.new()
self.print_tree(self.root)
self.check_sum_tree(self.root, output)
if (output.status == true)
print(" Is Sum Tree \n")
else
print(" Is Not Sum Tree \n")
end

end

end

end

def main()
# Create tree object
tree1 = BinaryTree.new()
tree2 = BinaryTree.new()
#
# 		Constructing binary tree
# 		-----------------------
# 		         96
# 		        /  \
# 		       /    \
# 		     37     11
# 		     / \    /  \
# 		    18  1  5    6
# 		     \
# 		      9
# 		     /  \
# 		    3    6
#

tree1.root = Node.new(96)
tree1.root.left = Node.new(37)
tree1.root.left.right = Node.new(1)
tree1.root.right = Node.new(11)
tree1.root.right.right = Node.new(6)
tree1.root.right.left = Node.new(5)
tree1.root.left.left = Node.new(18)
tree1.root.left.left.right = Node.new(9)
tree1.root.left.left.right.right = Node.new(6)
tree1.root.left.left.right.left = Node.new(3)
tree1.is_sum_tree()
#
# 		Constructing binary tree
# 		-----------------------
# 		     36
# 		    /  \
# 		   /    \
# 		  2      17
# 		 / \    /  \
# 		1   1  5    6
#
#

tree2.root = Node.new(36)
tree2.root.left = Node.new(2)
tree2.root.left.right = Node.new(1)
tree2.root.right = Node.new(17)
tree2.root.right.right = Node.new(6)
tree2.root.right.left = Node.new(5)
tree2.root.left.left = Node.new(1)
#
# 		When subtree sum is not equal to parent node
# 		----------------------------------------
# 		  17 => problem here
# 		 /  \
# 		5    6
#

tree2.is_sum_tree()
end

main()``````

#### Output

`````` Preorder :  96 37 18 9 3 6 1 11 5 6
Is Sum Tree

Preorder :  36 2 1 1 17 5 6
Is Not Sum Tree
``````
``````/*
Scala Program
Check if a given Binary Tree is Sumtree
*/

//  Binary Tree node
class Node(var data: Int , var left: Node , var right: Node)
{
def this(data: Int)
{
this(data, null, null);
}
}
class Result(var status: Boolean)
{
def this()
{
this(true);
}
}
// Define Binary Tree
class BinaryTree(var root: Node)
{
def this()
{
this(null);
}
// Display pre order elements
def print_preorder(node: Node): Unit = {
if (node != null)
{
// Print node value
print(" " + node.data);
print_preorder(node.left);
print_preorder(node.right);
}
}
// Handles the request of display the element of tree
def print_tree(root: Node): Unit = {
if (root == null)
{
return;
}
//  Display tree elements in three formats
print("\n Preorder : ");
print_preorder(root);
print("\n");
}
// Determine whether given binary tree is subtree or not
def check_sum_tree(node: Node, output: Result): Int = {
if (node == null || output.status == false)
{
return 0;
}
else if (node.left == null && node.right == null)
{
return node.data;
}
else
{
// recursively calculate sum of left and right subtree
var a: Int = check_sum_tree(node.left, output);
var b: Int = check_sum_tree(node.right, output);
if (output.status == true)
{
if ((a + b) == node.data)
{
return (a + b) * 2;
}
else
{
//  violation of subtree sum
output.status = false;
}
}
return 0;
}
}
//  Handles the request of to find sum tree exist in binary tree
def is_sum_tree(): Unit = {
if (this.root == null)
{
return;
}
else
{
var output: Result = new Result();
this.print_tree(this.root);
this.check_sum_tree(this.root, output);
if (output.status == true)
{
print(" Is Sum Tree \n");
}
else
{
print(" Is Not Sum Tree \n");
}
}
}
}
object Main
{
def main(args: Array[String]): Unit = {
// Create tree object
var tree1: BinaryTree = new BinaryTree();
var tree2: BinaryTree = new BinaryTree();
/*
Constructing binary tree
-----------------------
96
/  \
/    \
37     11
/ \    /  \
18  1  5    6
\
9
/  \
3    6
*/
tree1.root = new Node(96);
tree1.root.left = new Node(37);
tree1.root.left.right = new Node(1);
tree1.root.right = new Node(11);
tree1.root.right.right = new Node(6);
tree1.root.right.left = new Node(5);
tree1.root.left.left = new Node(18);
tree1.root.left.left.right = new Node(9);
tree1.root.left.left.right.right = new Node(6);
tree1.root.left.left.right.left = new Node(3);
tree1.is_sum_tree();
/*
Constructing binary tree
-----------------------
36
/  \
/    \
2      17
/ \    /  \
1   1  5    6

*/
tree2.root = new Node(36);
tree2.root.left = new Node(2);
tree2.root.left.right = new Node(1);
tree2.root.right = new Node(17);
tree2.root.right.right = new Node(6);
tree2.root.right.left = new Node(5);
tree2.root.left.left = new Node(1);
/*
When subtree sum is not equal to parent node
----------------------------------------
17 => problem here
/  \
5    6

*/
tree2.is_sum_tree();
}
}``````

#### Output

`````` Preorder :  96 37 18 9 3 6 1 11 5 6
Is Sum Tree

Preorder :  36 2 1 1 17 5 6
Is Not Sum Tree``````
``````/*
Swift 4 Program
Check if a given Binary Tree is Sumtree
*/

//  Binary Tree node
class Node
{
var data: Int;
var left: Node? ;
var right: Node? ;
init(_ data: Int)
{
//  Set node value
self.data = data;
self.left = nil;
self.right = nil;
}
}
class Result
{
var status: Bool;
init()
{
self.status = true;
}
}
// Define Binary Tree
class BinaryTree
{
var root: Node? ;
init()
{
// Set root of tree
self.root = nil;
}
// Display pre order elements
func print_preorder(_ node: Node? )
{
if (node != nil)
{
// Print node value
print(" ", node!.data, terminator: "");
self.print_preorder(node!.left);
self.print_preorder(node!.right);
}
}
// Handles the request of display the element of tree
func print_tree(_ root: Node? )
{
if (root == nil)
{
return;
}
//  Display tree elements in three formats
print("\n Preorder : ", terminator: "");
self.print_preorder(root);
print("\n", terminator: "");
}
// Determine whether given binary tree is subtree or not
func check_sum_tree(_ node: Node? , _ output : Result? )->Int
{
if (node == nil || output!.status == false)
{
return 0;
}
else if (node!.left == nil && node!.right == nil)
{
return node!.data;
}
else
{
// recursively calculate sum of left and right subtree
let a: Int = self.check_sum_tree(node!.left, output);
let b: Int = self.check_sum_tree(node!.right, output);
if (output!.status == true)
{
if ((a + b) == node!.data)
{
return (a + b) * 2;
}
else
{
//  violation of subtree sum
output!.status = false;
}
}
return 0;
}
}
//  Handles the request of to find sum tree exist in binary tree
func is_sum_tree()
{
if (self.root == nil)
{
return;
}
else
{
let output: Result? = Result();
self.print_tree(self.root);
let _ = self.check_sum_tree(self.root, output);
if (output!.status == true)
{
print(" Is Sum Tree \n", terminator: "");
}
else
{
print(" Is Not Sum Tree \n", terminator: "");
}
}
}
}
func main()
{
// Create tree object
let tree1: BinaryTree = BinaryTree();
let tree2: BinaryTree = BinaryTree();
/*
Constructing binary tree
-----------------------
96
/  \
/    \
37     11
/ \    /  \
18  1  5    6
\
9
/  \
3    6
*/
tree1.root = Node(96);
tree1.root!.left = Node(37);
tree1.root!.left!.right = Node(1);
tree1.root!.right = Node(11);
tree1.root!.right!.right = Node(6);
tree1.root!.right!.left = Node(5);
tree1.root!.left!.left = Node(18);
tree1.root!.left!.left!.right = Node(9);
tree1.root!.left!.left!.right!.right = Node(6);
tree1.root!.left!.left!.right!.left = Node(3);
tree1.is_sum_tree();
/*
Constructing binary tree
-----------------------
36
/  \
/    \
2      17
/ \    /  \
1   1  5    6

*/
tree2.root = Node(36);
tree2.root!.left = Node(2);
tree2.root!.left!.right = Node(1);
tree2.root!.right = Node(17);
tree2.root!.right!.right = Node(6);
tree2.root!.right!.left = Node(5);
tree2.root!.left!.left = Node(1);
/*
When subtree sum is not equal to parent node
----------------------------------------
17 => problem here
/  \
5    6

*/
tree2.is_sum_tree();
}
main();``````

#### Output

`````` Preorder :   96  37  18  9  3  6  1  11  5  6
Is Sum Tree

Preorder :   36  2  1  1  17  5  6
Is Not Sum Tree``````

## Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

Categories
Relative Post