Posted on by Kalkicode
Code Number

Centered Nonagonal Number

The centered nonagonal number is a sequence of numbers that can be represented by the formula: ((3 * n) - 2) * ((3 * n) - 1)) / 2, where n is the position of the number in the sequence. In this article, we will explore the concept of centered nonagonal numbers, provide an explanation of the given code, and analyze its time complexity.

Introduction

Centered nonagonal numbers are a subset of polygonal numbers, which are numbers that can be arranged in the shape of regular polygons. The centered nonagonal numbers, in particular, are formed by placing a dot at the center and surrounding it with concentric layers of nonagons (nine-sided polygons).

Problem Statement

The goal of the given code is to calculate and print the first k centered nonagonal numbers. The code takes an integer k as input and uses a loop to iterate from 1 to k. In each iteration, the centered nonagonal formula is applied to calculate the corresponding centered nonagonal number, which is then displayed on the console.

For example, when the input k is 10, the code will calculate and print the first 10 centered nonagonal numbers: 1, 10, 28, 55, 91, 136, 190, 253, 325, and 406.

Algorithm

The algorithm used in the given code is straightforward:

  1. Take an integer k as input.
  2. Iterate from n = 1 to n = k using a loop.
  3. Inside the loop, calculate the centered nonagonal number using the formula: ((3 * n) - 2) * ((3 * n) - 1)) / 2.
  4. Display the calculated centered nonagonal number.
  5. Repeat steps 3-4 for all values of n from 1 to k.

The algorithm calculates the centered nonagonal number for each iteration of the loop, starting from n = 1 and ending at n = k. The calculated centered nonagonal numbers are then printed on the console.

Code Solution

Here given code implementation process.

// C Program for
// Centered Nonagonal Number
#include <stdio.h>

void centeredNonagonalNo(int k)
{
	// Print all initial k centered nonagonal number
	for (int n = 1; n <= k; ++n)
	{
		// Centered nonagonal formula
		//  (3n-2) (3n-1)
		//  —————————————
		//       2
		// Centered nonagonal number
		int result = (((3 * n) - 2) * ((3 * n) - 1)) / 2;
		// Display calculated result
		printf("  %d", result);
	}
}
int main()
{
	// Centered Nonagonal numbers
	// --------------------------------------
	// 1, 10, 28, 55, 91, 136, 190, 253, 
	// 325, 406, 496, 595, 703, 820, 946 ... etc.
	// Test 
	// k  = 10
	centeredNonagonalNo(10);
	return 0;
}

Output

  1  10  28  55  91  136  190  253  325  406
// Java program for
// Centered Nonagonal Number
public class NonagonalNumber
{
	public void centeredNonagonalNo(int k)
	{
		// Print all initial k centered nonagonal number
		for (int n = 1; n <= k; ++n)
		{
			// Centered nonagonal formula
			//  (3n-2) (3n-1)
			//  —————————————
			//       2
			// Centered nonagonal number
			int result = (((3 * n) - 2) * ((3 * n) - 1)) / 2;
			// Display calculated result
			System.out.print(" " + result);
		}
	}
	public static void main(String[] args)
	{
		NonagonalNumber task = new NonagonalNumber();
		// Centered Nonagonal numbers
		// --------------------------------------
		// 1, 10, 28, 55, 91, 136, 190, 253, 
		// 325, 406, 496, 595, 703, 820, 946 ... etc.
		// Test 
		// k  = 10
		task.centeredNonagonalNo(10);
	}
}

Output

 1 10 28 55 91 136 190 253 325 406
// Include header file
#include <iostream>
using namespace std;
// C++ program for
// Centered Nonagonal Number
class NonagonalNumber
{
	public: void centeredNonagonalNo(int k)
	{
		// Print all initial k centered nonagonal number
		for (int n = 1; n <= k; ++n)
		{
			// Centered nonagonal formula
			//  (3n-2) (3n-1)
			//  —————————————
			//       2
          
			// Centered nonagonal number
			int result = (((3 *n) - 2) *((3 *n) - 1)) / 2;
          
			// Display calculated result
			cout << " " << result;
		}
	}
};
int main()
{
	NonagonalNumber *task = new NonagonalNumber();
	// Centered Nonagonal numbers
	// --------------------------------------
	// 1, 10, 28, 55, 91, 136, 190, 253, 
	// 325, 406, 496, 595, 703, 820, 946 ... etc.
  
	// Test 
	// k  = 10
	task->centeredNonagonalNo(10);
	return 0;
}

Output

 1 10 28 55 91 136 190 253 325 406
// Include namespace system
using System;
// Csharp program for
// Centered Nonagonal Number
public class NonagonalNumber
{
	public void centeredNonagonalNo(int k)
	{
		// Print all initial k centered nonagonal number
		for (int n = 1; n <= k; ++n)
		{
			// Centered nonagonal formula
			//  (3n-2) (3n-1)
			//  —————————————
			//       2
          
			// Centered nonagonal number
			int result = (((3 * n) - 2) * ((3 * n) - 1)) / 2;
          
			// Display calculated result
			Console.Write(" " + result);
		}
	}
	public static void Main(String[] args)
	{
		NonagonalNumber task = new NonagonalNumber();
		// Centered Nonagonal numbers
		// --------------------------------------
		// 1, 10, 28, 55, 91, 136, 190, 253, 
		// 325, 406, 496, 595, 703, 820, 946 ... etc.
      
		// Test 
		// k  = 10
		task.centeredNonagonalNo(10);
	}
}

Output

 1 10 28 55 91 136 190 253 325 406
package main
import "fmt"
// Go program for
// Centered Nonagonal Number

func centeredNonagonalNo(k int) {
	// Print all initial k centered nonagonal number
	for n := 1 ; n <= k ; n++ {
		// Centered nonagonal formula
		//  (3n-2) (3n-1)
		//  —————————————
		//       2

		// Centered nonagonal number
		var result int = (((3 * n) - 2) * ((3 * n) - 1)) / 2
		
		// Display calculated result
		fmt.Print(" ", result)
	}
}
func main() {

	// Centered Nonagonal numbers
	// --------------------------------------
	// 1, 10, 28, 55, 91, 136, 190, 253, 
	// 325, 406, 496, 595, 703, 820, 946 ... etc.
	
	// Test 
	// k  = 10
	centeredNonagonalNo(10)
}

Output

 1 10 28 55 91 136 190 253 325 406
<?php
// Php program for
// Centered Nonagonal Number
class NonagonalNumber
{
	public	function centeredNonagonalNo($k)
	{
		// Print all initial k centered nonagonal number
		for ($n = 1; $n <= $k; ++$n)
		{
			// Centered nonagonal formula
			//  (3n-2) (3n-1)
			//  —————————————
			//       2
          
			// Centered nonagonal number
			$result = (int)((((3 * $n) - 2) * ((3 * $n) - 1)) / 2);
          
			// Display calculated result
			echo(" ".$result);
		}
	}
}

function main()
{
	$task = new NonagonalNumber();
	// Centered Nonagonal numbers
	// --------------------------------------
	// 1, 10, 28, 55, 91, 136, 190, 253, 
	// 325, 406, 496, 595, 703, 820, 946 ... etc.
  
	// Test 
	// k  = 10
	$task->centeredNonagonalNo(10);
}
main();

Output

 1 10 28 55 91 136 190 253 325 406
// Node JS program for
// Centered Nonagonal Number
class NonagonalNumber
{
	centeredNonagonalNo(k)
	{
		// Print all initial k centered nonagonal number
		for (var n = 1; n <= k; ++n)
		{
			// Centered nonagonal formula
			//  (3n-2) (3n-1)
			//  —————————————
			//       2
          
			// Centered nonagonal number
			var result = parseInt((((3 * n) - 2) * ((3 * n) - 1)) / 2);
          
			// Display calculated result
			process.stdout.write(" " + result);
		}
	}
}

function main()
{
	var task = new NonagonalNumber();
	// Centered Nonagonal numbers
	// --------------------------------------
	// 1, 10, 28, 55, 91, 136, 190, 253, 
	// 325, 406, 496, 595, 703, 820, 946 ... etc.
	// Test 
	// k  = 10
	task.centeredNonagonalNo(10);
}
main();

Output

 1 10 28 55 91 136 190 253 325 406
#  Python 3 program for
#  Centered Nonagonal Number
class NonagonalNumber :
	def centeredNonagonalNo(self, k) :
		n = 1
		#  Print all initial k centered nonagonal number
		while (n <= k) :
			#  Centered nonagonal formula
			#   (3n-2) (3n-1)
			#   —————————————
			#        2
            
			#  Centered nonagonal number
			result = int((((3 * n) - 2) * ((3 * n) - 1)) / 2)

			#  Display calculated result
			print(" ", result, end = "")
			n += 1
		
	

def main() :
	task = NonagonalNumber()
	#  Centered Nonagonal numbers
	#  --------------------------------------
	#  1, 10, 28, 55, 91, 136, 190, 253, 
	#  325, 406, 496, 595, 703, 820, 946 ... etc.
    
	#  Test 
	#  k  = 10
	task.centeredNonagonalNo(10)

if __name__ == "__main__": main()

Output

  1  10  28  55  91  136  190  253  325  406
#  Ruby program for
#  Centered Nonagonal Number
class NonagonalNumber 
	def centeredNonagonalNo(k) 
		n = 1
		#  Print all initial k centered nonagonal number
		while (n <= k) 
			#  Centered nonagonal formula
			#   (3n-2) (3n-1)
			#   —————————————
			#        2
            
			#  Centered nonagonal number
			result = (((3 * n) - 2) * ((3 * n) - 1)) / 2

			#  Display calculated result
			print(" ", result)
			n += 1
		end

	end

end

def main() 
	task = NonagonalNumber.new()
	#  Centered Nonagonal numbers
	#  --------------------------------------
	#  1, 10, 28, 55, 91, 136, 190, 253, 
	#  325, 406, 496, 595, 703, 820, 946 ... etc.
    
	#  Test 
	#  k  = 10
	task.centeredNonagonalNo(10)
end

main()

Output

 1 10 28 55 91 136 190 253 325 406
// Scala program for
// Centered Nonagonal Number
class NonagonalNumber()
{
	def centeredNonagonalNo(k: Int): Unit = {
		var n: Int = 1;
		// Print all initial k centered nonagonal number
		while (n <= k)
		{
			// Centered nonagonal formula
			//  (3n-2) (3n-1)
			//  —————————————
			//       2
          
			// Centered nonagonal number
			var result: Int = (((3 * n) - 2) * ((3 * n) - 1)) / 2;
          
			// Display calculated result
			print(" " + result);
			n += 1;
		}
	}
}
object Main
{
	def main(args: Array[String]): Unit = {
		var task: NonagonalNumber = new NonagonalNumber();
		// Centered Nonagonal numbers
		// --------------------------------------
		// 1, 10, 28, 55, 91, 136, 190, 253, 
		// 325, 406, 496, 595, 703, 820, 946 ... etc.
		// Test 
		// k  = 10
		task.centeredNonagonalNo(10);
	}
}

Output

 1 10 28 55 91 136 190 253 325 406
// Swift 4 program for
// Centered Nonagonal Number
class NonagonalNumber
{
	func centeredNonagonalNo(_ k: Int)
	{
		var n: Int = 1;
		// Print all initial k centered nonagonal number
		while (n <= k)
		{
			// Centered nonagonal formula
			//  (3n-2) (3n-1)
			//  —————————————
			//       2
			// Centered nonagonal number
			let result: Int = (((3 * n) - 2) * ((3 * n) - 1)) / 2;
			// Display calculated result
			print(" ", result, terminator: "");
			n += 1;
		}
	}
}
func main()
{
	let task: NonagonalNumber = NonagonalNumber();
	// Centered Nonagonal numbers
	// --------------------------------------
	// 1, 10, 28, 55, 91, 136, 190, 253, 
	// 325, 406, 496, 595, 703, 820, 946 ... etc.
	// Test 
	// k  = 10
	task.centeredNonagonalNo(10);
}
main();

Output

  1  10  28  55  91  136  190  253  325  406
// Kotlin program for
// Centered Nonagonal Number
class NonagonalNumber
{
	fun centeredNonagonalNo(k: Int): Unit
	{
		var n: Int = 1;
		// Print all initial k centered nonagonal number
		while (n <= k)
		{
			// Centered nonagonal formula
			//  (3n-2) (3n-1)
			//  —————————————
			//       2
          
			// Centered nonagonal number
			val result: Int = (((3 * n) - 2) * ((3 * n) - 1)) / 2;
          
			// Display calculated result
			print(" " + result);
			n += 1;
		}
	}
}
fun main(args: Array < String > ): Unit
{
	val task: NonagonalNumber = NonagonalNumber();
	// Centered Nonagonal numbers
	// --------------------------------------
	// 1, 10, 28, 55, 91, 136, 190, 253, 
	// 325, 406, 496, 595, 703, 820, 946 ... etc.
  
	// Test 
	// k  = 10
	task.centeredNonagonalNo(10);
}

Output

 1 10 28 55 91 136 190 253 325 406

Time Complexity

The time complexity of the given code is O(k), where k is the input value. This is because the code uses a loop that iterates k times to calculate and display the centered nonagonal numbers.

Resultant Output

The code, when executed with an input value of k = 10, will generate the following output:

  1  10  28  55  91  136  190  253  325  406

The output represents the first 10 centered nonagonal numbers, as calculated by the code.

Finally

In this article, we explored the concept of centered nonagonal numbers and provided an explanation of the given code to calculate and print these numbers. We discussed the problem statement, algorithm, and time complexity of the code. Additionally, we presented the resultant output for a sample input value. The centered nonagonal numbers have various applications in mathematics and can be further studied to explore their properties and patterns.

Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

New Comment