Skip to main content

Binary tree down-right conversion

Binary tree down-right conversion

Here given code implementation process.

/*
  C Program 
+ Convert left-right representation of a binary tree to down-right
*/
#include <stdio.h>
#include <stdlib.h>
//structure of Binary Tree node
struct Node
{
  int data;
  struct Node*left,*right;
};

//Create a binary tree nodes and node fields (data,pointer) 
//And returning the reference of newly nodes

struct Node* newNode(int data)
{
  //create dynamic memory to new binary tree node
  struct Node*new_node=(struct Node*)malloc(sizeof(struct Node));
  if(new_node!=NULL)
  {
    //set data and pointer values
    new_node->data=data;
    new_node->left=NULL; //Initially node left-pointer is NULL
    new_node->right=NULL;//Initially node right-pointer is NULL
  }else
  {
    printf("Memory Overflow\n");
    exit(0); //Terminate program execution
  }
  //return reference
  return new_node;
  
}
void convert(struct Node*root)
{

  if(root==NULL) return ;

  convert(root->left);
  convert(root->right);
  
  if(root->left==NULL)
  {
    //change left child
     root->left=root->right;
  }
  else
  {
    root->left->right=root->right;
  }

  root->right=NULL;
  
}
void inorder(struct Node *root) 
{ 
  if (root != NULL) 
  { 
    
         
    inorder(root->left);
    printf("%3d",root->data);
    inorder(root->right);

  } 
} 
//Display tree element preorder form
void preorder(struct Node*node){

  if(node){
    //Print node value
    printf("  %d",node->data);
    preorder(node->left);
    preorder(node->right);
  }
}

//Display tree element postorder form
void postorder(struct Node*node){

  if(node){
  
    postorder(node->left);

    postorder(node->right);
      //Print node value
    printf("  %d",node->data);
  }
}
int main(){

  struct Node*root=NULL;

  /*  Make A Binary Tree
  -----------------------
           1
         /   \
        2     4
       /     / \
      3     6   5
       \   / \   \
        7 9   8   0 

              
  */
  
  //add  nodes
  root               =newNode(1);
  root->left         =newNode(2);
  root->left->left   =newNode(3);
  root->left->left->right   =newNode(7);
  root->right        =newNode(4);
  root->right->right =newNode(5);
  root->right->right->right =newNode(0);
  root->right->left  =newNode(6);
  root->right->left->left  =newNode(9);
  root->right->left->right  =newNode(8);
  printf("Before");
  printf("\n Inorder : \n");
  inorder(root);

  printf("\n Preorder : \n");
  preorder(root);

  printf("\n Postorder : \n");
  postorder(root);
  /*
    1
    │   
    2――――4
    │    │
    3    6―――――――5
    │    │       │
    7    9―――8   0


  */

  convert(root);
  printf("\nAfter");
  printf("\n Inorder : \n");
  inorder(root);

  printf("\n Preorder : \n");
  preorder(root);

  printf("\n Postorder : \n");
  postorder(root);
  return 0;
}

Output

Before
 Inorder : 
  3  7  2  1  9  6  8  4  5  0
 Preorder : 
  1  2  3  7  4  6  9  8  5  0
 Postorder : 
  7  3  2  9  8  6  0  5  4  1
After
 Inorder : 
  7  3  2  9  8  6  0  5  4  1
 Preorder : 
  1  2  3  7  4  6  9  8  5  0
 Postorder : 
  7  3  8  9  0  5  6  4  2  1
/*
  C++ Program
Convert left-right representation of a binary tree to down-right
*/
#include<iostream>

using namespace std;
class Node {
public:
  int data;
  Node *left, *right;
  Node(int value) {
    this->data = value;
    this->left = NULL;
    this->right = NULL;
  }
};
class BinaryTree {
public:
  Node *root;
  BinaryTree() {
    this->root = NULL;
  }
  void in_order(Node *node) {
    if (node != NULL) {
      this->in_order(node->left);
      cout << "  " << node->data;
      this->in_order(node->right);
    }
  }
  void pre_order(Node *node) {
    if (node != NULL) {
      cout << "  " << node->data;
      this->pre_order(node->left);
      this->pre_order(node->right);
    }
  }
  void post_order(Node *node) {
    if (node != NULL) {
      this->post_order(node->left);
      this->post_order(node->right);
      cout << "  " << node->data;
    }
  }
  void convert(Node *head) {
    if (head == NULL) {
      return;
    }
    this->convert(head->left);
    this->convert(head->right);
    if (head->left == NULL) {
      head->left = head->right;
    } else {
      head->left->right = head->right;
    }
    head->right = NULL;
  }
};

int main() {
  BinaryTree obj;
  /*  Make A Binary Tree
  ---------------------
           1
         /   \
        2     4
       /     / \
      3     6   5
       \   / \   \
        7 9   8   0 

              
  */

  obj.root = new Node(1);
  obj.root->left = new Node(2);
  obj.root->left->left = new Node(3);
  obj.root->left->left->right = new Node(7);
  obj.root->right = new Node(4);
  obj.root->right->right = new Node(5);
  obj.root->right->right->right = new Node(0);
  obj.root->right->left = new Node(6);
  obj.root->right->left->left = new Node(9);
  obj.root->right->left->right = new Node(8);
  cout << "\n Before convert";
  cout << "\nIn-order Data : ";
  obj.in_order(obj.root);
  cout << "\nPre-order Data : ";
  obj.pre_order(obj.root);
  cout << "\nPost-order Data : ";
  obj.post_order(obj.root);
  obj.convert(obj.root);
  cout << "\n After convert";
  cout << "\nIn-order Data : ";
  obj.in_order(obj.root);
  cout << "\nPre-order Data : ";
  obj.pre_order(obj.root);
  cout << "\nPost-order Data : ";
  obj.post_order(obj.root);
  return 0;
}

Output

 Before convert
In-order Data :   3  7  2  1  9  6  8  4  5  0
Pre-order Data :   1  2  3  7  4  6  9  8  5  0
Post-order Data :   7  3  2  9  8  6  0  5  4  1
 After convert
In-order Data :   7  3  2  9  8  6  0  5  4  1
Pre-order Data :   1  2  3  7  4  6  9  8  5  0
Post-order Data :   7  3  8  9  0  5  6  4  2  1
/*
Java Program 
Convert left-right representation of a binary tree to down-right
*/

//Class of Binary Tree node
class Node {

  public int data;
  public Node left, right;
  //Make a tree node
  public Node(int value) {
    //Assign field values
    data = value;
    left = null;
    right = null;
  }
}

public class BinaryTree {

  public Node root;

  public BinaryTree() {
    //Set initial initial values
    root = null;
  }
  //Display tree element inorder form
  public void in_order(Node node) {

    if (node != null) {

      in_order(node.left);
      //Print node value
      System.out.print("  " + node.data);
      in_order(node.right);
    }
  }
  //Display tree element preorder form
  public void pre_order(Node node) {

    if (node != null) {
      //Print node value
      System.out.print("  " + node.data);
      pre_order(node.left);

      pre_order(node.right);
    }
  }
  //Display tree element preorder form
  public void post_order(Node node) {

    if (node != null) {

      post_order(node.left);

      post_order(node.right);
      //Print node value
      System.out.print("  " + node.data);
    }
  }
  public void convert(Node head) {

    if (head == null) {
      return;
    }

    convert(head.left);
    convert(head.right);

    if (head.left == null) {
      //change left child
      head.left = head.right;
    } else {
      head.left.right = head.right;
    }

    head.right = null;

  }
  public static void main(String[] args) {
    //Make object of Binary Tree
    BinaryTree obj = new BinaryTree();


    /* Make A Binary Tree
      -----------------------
               1
             /   \
            2     4
           /     / \
          3     6   5
           \   / \   \
            7 9   8   0 

                  
      */

    //add  nodes
    obj.root = new Node(1);
    obj.root.left = new Node(2);
    obj.root.left.left = new Node(3);
    obj.root.left.left.right = new Node(7);
    obj.root.right = new Node(4);
    obj.root.right.right = new Node(5);
    obj.root.right.right.right = new Node(0);
    obj.root.right.left = new Node(6);
    obj.root.right.left.left = new Node(9);
    obj.root.right.left.right = new Node(8);
    System.out.print("\n Before convert");
    System.out.print("\nIn-order Data : ");
    obj.in_order(obj.root);

    System.out.print("\nPre-order Data : ");
    obj.pre_order(obj.root);

    System.out.print("\nPost-order Data : ");
    obj.post_order(obj.root);
    /*
      1
      │   
      2――――4
      │    │
      3    6―――――――5
      │    │       │
      7    9―――8   0


    */
    obj.convert(obj.root);
    System.out.print("\n After convert");
    System.out.print("\nIn-order Data : ");
    obj.in_order(obj.root);

    System.out.print("\nPre-order Data : ");
    obj.pre_order(obj.root);

    System.out.print("\nPost-order Data : ");
    obj.post_order(obj.root);
  }
}

Output

 Before convert
In-order Data :   3  7  2  1  9  6  8  4  5  0
Pre-order Data :   1  2  3  7  4  6  9  8  5  0
Post-order Data :   7  3  2  9  8  6  0  5  4  1
 After convert
In-order Data :   7  3  2  9  8  6  0  5  4  1
Pre-order Data :   1  2  3  7  4  6  9  8  5  0
Post-order Data :   7  3  8  9  0  5  6  4  2  1
/*
C# Program 
Convert left-right representation of a binary tree to down-right
*/
using System;
//Class of Binary Tree node
public class Node {

	public int data;
	public Node left, right;
	//Make a tree node
	public Node(int value) {
		//Assign field values
		data = value;
		left = null;
		right = null;
	}
}

public class BinaryTree {

	public Node root;

	public BinaryTree() {
		//Set initial initial values
		root = null;
	}
	//Display tree element inorder form
	public void in_order(Node node) {

		if (node != null) {

			in_order(node.left);
			//Print node value
			Console.Write("  " + node.data);
			in_order(node.right);
		}
	}
	//Display tree element preorder form
	public void pre_order(Node node) {

		if (node != null) {
			//Print node value
			Console.Write("  " + node.data);
			pre_order(node.left);

			pre_order(node.right);
		}
	}
	//Display tree element preorder form
	public void post_order(Node node) {

		if (node != null) {

			post_order(node.left);

			post_order(node.right);
			//Print node value
			Console.Write("  " + node.data);
		}
	}
	public void convert(Node head) {

		if (head == null) {
			return;
		}

		convert(head.left);
		convert(head.right);

		if (head.left == null) {
			//change left child
			head.left = head.right;
		} else {
			head.left.right = head.right;
		}

		head.right = null;

	}
	public static void Main(String[] args) {
		//Make object of Binary Tree
		BinaryTree obj = new BinaryTree();


		/* Make A Binary Tree
      -----------------------
               1
             /   \
            2     4
           /     / \
          3     6   5
           \   / \   \
            7 9   8   0 

                  
      */

		//add  nodes
		obj.root = new Node(1);
		obj.root.left = new Node(2);
		obj.root.left.left = new Node(3);
		obj.root.left.left.right = new Node(7);
		obj.root.right = new Node(4);
		obj.root.right.right = new Node(5);
		obj.root.right.right.right = new Node(0);
		obj.root.right.left = new Node(6);
		obj.root.right.left.left = new Node(9);
		obj.root.right.left.right = new Node(8);
		Console.Write("\n Before convert");
		Console.Write("\nIn-order Data : ");
		obj.in_order(obj.root);

		Console.Write("\nPre-order Data : ");
		obj.pre_order(obj.root);

		Console.Write("\nPost-order Data : ");
		obj.post_order(obj.root);
		/*
      1
      │   
      2――――4
      │    │
      3    6―――――――5
      │    │       │
      7    9―――8   0


    */
		obj.convert(obj.root);
		Console.Write("\n After convert");
		Console.Write("\nIn-order Data : ");
		obj.in_order(obj.root);

		Console.Write("\nPre-order Data : ");
		obj.pre_order(obj.root);

		Console.Write("\nPost-order Data : ");
		obj.post_order(obj.root);
	}
}

Output

 Before convert
In-order Data :   3  7  2  1  9  6  8  4  5  0
Pre-order Data :   1  2  3  7  4  6  9  8  5  0
Post-order Data :   7  3  2  9  8  6  0  5  4  1
 After convert
In-order Data :   7  3  2  9  8  6  0  5  4  1
Pre-order Data :   1  2  3  7  4  6  9  8  5  0
Post-order Data :   7  3  8  9  0  5  6  4  2  1
# Python Program 
# Convert left-right representation of a binary tree to down-right
class Node :
  def __init__(self, value) :
    self.data = value
    self.left = None
    self.right = None
  

class BinaryTree :

  def __init__(self) :
    self.root = None
  
  def in_order(self, node) :
    if (node != None) :
      self.in_order(node.left)
      print(node.data,end="  ")
      self.in_order(node.right)
    
  
  def pre_order(self, node) :
    if (node != None) :
      print(node.data,end="  ")
      self.pre_order(node.left)
      self.pre_order(node.right)
    
  
  def post_order(self, node) :
    if (node != None) :
      self.post_order(node.left)
      self.post_order(node.right)
      print(node.data,end="  ")
    
  
  def convert(self, head) :
    if (head == None) :
      return
    
    self.convert(head.left)
    self.convert(head.right)
    if (head.left == None) :
      head.left = head.right
    else :
      head.left.right = head.right
    
    head.right = None
  
def main() :
  obj = BinaryTree()
  #  Make A Binary Tree
  #           1
  #         /   \
  #        2     4
  #       /     / \
  #      3     6   5
  #       \   / \   \
  #        7 9   8   0
  #  
  obj.root = Node(1)
  obj.root.left = Node(2)
  obj.root.left.left = Node(3)
  obj.root.left.left.right = Node(7)
  obj.root.right = Node(4)
  obj.root.right.right = Node(5)
  obj.root.right.right.right = Node(0)
  obj.root.right.left = Node(6)
  obj.root.right.left.left = Node(9)
  obj.root.right.left.right = Node(8)
  print("\n Before convert")
  print("In-order Data : ")
  obj.in_order(obj.root)
  print("\nPre-order Data : ")
  obj.pre_order(obj.root)
  print("\nPost-order Data : ")
  obj.post_order(obj.root)
  obj.convert(obj.root)
  print("\n After convert")
  print("In-order Data : ")
  obj.in_order(obj.root)
  print("\nPre-order Data : ")
  obj.pre_order(obj.root)
  print("\nPost-order Data : ")
  obj.post_order(obj.root)


if __name__ == "__main__":
  main()

Output

 Before convert
In-order Data : 
3  7  2  1  9  6  8  4  5  0  
Pre-order Data : 
1  2  3  7  4  6  9  8  5  0  
Post-order Data : 
7  3  2  9  8  6  0  5  4  1  
 After convert
In-order Data : 
7  3  2  9  8  6  0  5  4  1  
Pre-order Data : 
1  2  3  7  4  6  9  8  5  0  
Post-order Data : 
7  3  8  9  0  5  6  4  2  1
# Ruby Program
# Convert left-right representation of a binary tree to down-right
class Node 
	attr_reader :data, :left, :right
	attr_accessor :data, :left, :right
	def initialize(value) 
		@data = value
		@left = nil
		@right = nil
	end
end

class BinaryTree 
	attr_reader :root
	attr_accessor :root
	def initialize() 
		@root = nil
	end
	def in_order(node) 
		if (node != nil) 
			self.in_order(node.left)
			print("  ", node.data)
			self.in_order(node.right)
		end
	end
	def pre_order(node) 
		if (node != nil) 
			print("  ", node.data)
			self.pre_order(node.left)
			self.pre_order(node.right)
		end
	end
	def post_order(node) 
		if (node != nil) 
			self.post_order(node.left)
			self.post_order(node.right)
			print("  ", node.data)
		end
	end
	def convert(head) 
		if (head == nil) 
			return
		end
		self.convert(head.left)
		self.convert(head.right)
		if (head.left == nil) 
			head.left = head.right
		else 
			head.left.right = head.right
		end
		head.right = nil
	end
end

def main() 
	obj = BinaryTree.new()
	#  Make A Binary Tree
	#           1
	#         /   \
	#        2     4
	#       /     / \
	#      3     6   5
	#       \   / \   \
	#        7 9   8   0
	#  
	obj.root = Node.new(1)
	obj.root.left = Node.new(2)
	obj.root.left.left = Node.new(3)
	obj.root.left.left.right = Node.new(7)
	obj.root.right = Node.new(4)
	obj.root.right.right = Node.new(5)
	obj.root.right.right.right = Node.new(0)
	obj.root.right.left = Node.new(6)
	obj.root.right.left.left = Node.new(9)
	obj.root.right.left.right = Node.new(8)
	print("\n Before convert")
	print("\nIn-order Data  :")
	obj.in_order(obj.root)
	print("\nPre-order Data  :")
	obj.pre_order(obj.root)
	print("\nPost-order Data  :")
	obj.post_order(obj.root)
	obj.convert(obj.root)
	print("\n After convert")
	print("\nIn-order Data  :")
	obj.in_order(obj.root)
	print("\nPre-order Data  :")
	obj.pre_order(obj.root)
	print("\nPost-order Data  :")
	obj.post_order(obj.root)
end
main()

Output

 Before convert
In-order Data  :  3  7  2  1  9  6  8  4  5  0
Pre-order Data  :  1  2  3  7  4  6  9  8  5  0
Post-order Data  :  7  3  2  9  8  6  0  5  4  1
 After convert
In-order Data  :  7  3  2  9  8  6  0  5  4  1
Pre-order Data  :  1  2  3  7  4  6  9  8  5  0
Post-order Data  :  7  3  8  9  0  5  6  4  2  1
<?php
/*
  Php Program
  Convert left-right representation of a binary tree to down-right
*/
class Node {
  public $data;
  public $left;
  public $right;

  function __construct($value) {
    $this->data = $value;
    $this->left = null;
    $this->right = null;
  }
}
class BinaryTree {
  public $root;

  function __construct() {
    $this->root = null;
  }
  public  function in_order($node) {
    if ($node != null) {
      $this->in_order($node->left);
      echo("  ". $node->data);
      $this->in_order($node->right);
    }
  }
  public  function pre_order($node) {
    if ($node != null) {
      echo("  ". $node->data);
      $this->pre_order($node->left);
      $this->pre_order($node->right);
    }
  }
  public  function post_order($node) {
    if ($node != null) {
      $this->post_order($node->left);
      $this->post_order($node->right);
      echo("  ". $node->data);
    }
  }
  public  function convert($head) {
    if ($head == null) {
      return;
    }
    $this->convert($head->left);
    $this->convert($head->right);
    if ($head->left == null) {
      $head->left = $head->right;
    } else {
      $head->left->right = $head->right;
    }
    $head->right = null;
  }
}
function main() {
  $obj = new BinaryTree();
  /*  Make A Binary Tree
  -----------------------
           1
         /   \
        2     4
       /     / \
      3     6   5
       \   / \   \
        7 9   8   0 

              
  */
  $obj->root = new Node(1);
  $obj->root->left = new Node(2);
  $obj->root->left->left = new Node(3);
  $obj->root->left->left->right = new Node(7);
  $obj->root->right = new Node(4);
  $obj->root->right->right = new Node(5);
  $obj->root->right->right->right = new Node(0);
  $obj->root->right->left = new Node(6);
  $obj->root->right->left->left = new Node(9);
  $obj->root->right->left->right = new Node(8);
  echo("\n Before convert");
  echo("\nIn-order Data : ");
  $obj->in_order($obj->root);
  echo("\nPre-order Data : ");
  $obj->pre_order($obj->root);
  echo("\nPost-order Data : ");
  $obj->post_order($obj->root);
  $obj->convert($obj->root);
  echo("\n After convert");
  echo("\nIn-order Data : ");
  $obj->in_order($obj->root);
  echo("\nPre-order Data : ");
  $obj->pre_order($obj->root);
  echo("\nPost-order Data : ");
  $obj->post_order($obj->root);
}
main();

Output

 Before convert
In-order Data  :  3  7  2  1  9  6  8  4  5  0
Pre-order Data  :  1  2  3  7  4  6  9  8  5  0
Post-order Data  :  7  3  2  9  8  6  0  5  4  1
 After convert
In-order Data  :  7  3  2  9  8  6  0  5  4  1
Pre-order Data  :  1  2  3  7  4  6  9  8  5  0
Post-order Data  :  7  3  8  9  0  5  6  4  2  1
/*
  Node JS Program
  Convert left-right representation of a binary tree to down-right
*/
class Node {
	
	constructor(value) {
		this.data = value;
		this.left = null;
		this.right = null;
	}
}
class BinaryTree {
	
	constructor() {
		this.root = null;
	}
	in_order(node) {
		if (node != null) {
			this.in_order(node.left);
			process.stdout.write("  " + node.data);
			this.in_order(node.right);
		}
	}
	pre_order(node) {
		if (node != null) {
			process.stdout.write("  " + node.data);
			this.pre_order(node.left);
			this.pre_order(node.right);
		}
	}
	post_order(node) {
		if (node != null) {
			this.post_order(node.left);
			this.post_order(node.right);
			process.stdout.write("  " + node.data);
		}
	}
	convert(head) {
		if (head == null) {
			return;
		}
		this.convert(head.left);
		this.convert(head.right);
		if (head.left == null) {
			head.left = head.right;
		} else {
			head.left.right = head.right;
		}
		head.right = null;
	}
}
function main() {
	var obj = new BinaryTree();
	/*  Make A Binary Tree
    ---------------------
           1
         /   \
        2     4
       /     / \
      3     6   5
       \   / \   \
        7 9   8   0 

              
   */
	obj.root = new Node(1);
	obj.root.left = new Node(2);
	obj.root.left.left = new Node(3);
	obj.root.left.left.right = new Node(7);
	obj.root.right = new Node(4);
	obj.root.right.right = new Node(5);
	obj.root.right.right.right = new Node(0);
	obj.root.right.left = new Node(6);
	obj.root.right.left.left = new Node(9);
	obj.root.right.left.right = new Node(8);
	process.stdout.write("\n Before convert");
	process.stdout.write("\nIn-order Data : ");
	obj.in_order(obj.root);
	process.stdout.write("\nPre-order Data : ");
	obj.pre_order(obj.root);
	process.stdout.write("\nPost-order Data : ");
	obj.post_order(obj.root);
	obj.convert(obj.root);
	process.stdout.write("\n After convert");
	process.stdout.write("\nIn-order Data : ");
	obj.in_order(obj.root);
	process.stdout.write("\nPre-order Data : ");
	obj.pre_order(obj.root);
	process.stdout.write("\nPost-order Data : ");
	obj.post_order(obj.root);
}
main();

Output

 Before convert
In-order Data  :  3  7  2  1  9  6  8  4  5  0
Pre-order Data  :  1  2  3  7  4  6  9  8  5  0
Post-order Data  :  7  3  2  9  8  6  0  5  4  1
 After convert
In-order Data  :  7  3  2  9  8  6  0  5  4  1
Pre-order Data  :  1  2  3  7  4  6  9  8  5  0
Post-order Data  :  7  3  8  9  0  5  6  4  2  1
/*
  Swift 4 Program
  Convert left-right representation of a binary tree to down-right
*/
class Node {
  var data: Int;
  var left: Node? ;
  var right: Node? ;

  init(_ value: Int) {
    self.data = value;
    self.left = nil;
    self.right = nil;
  }
}
class BinaryTree {
  var root: Node? ;
  init() {
    self.root = nil;
  }
  func in_order(_ node: Node? ) {
    if (node != nil) {
      self.in_order(node!.left);
      print(node!.data, terminator:"  ");
      self.in_order(node!.right);
    }
  }
  func pre_order(_ node: Node? ) {
    if (node != nil) {
      print(node!.data, terminator:"  ");
      self.pre_order(node!.left);
      self.pre_order(node!.right);
    }
  }
  func post_order(_ node: Node? ) {
    if (node != nil) {
      self.post_order(node!.left);
      self.post_order(node!.right);
      print(node!.data, terminator:"  ");
    }
  }
  func convert(_ head: Node? ) {
    if (head == nil) {
      return;
    }
    self.convert(head!.left);
    self.convert(head!.right);
    if (head!.left == nil) {
      head!.left = head!.right;
    } else {
      head!.left!.right = head!.right;
    }
    head!.right = nil;
  }
}
func main() {
  let obj: BinaryTree = BinaryTree();
  /*  Make A Binary Tree
  -----------------------
           1
         /   \
        2     4
       /     / \
      3     6   5
       \   / \   \
        7 9   8   0 

              
  */
  obj.root = Node(1);
  obj.root!.left = Node(2);
  obj.root!.left!.left = Node(3);
  obj.root!.left!.left!.right = Node(7);
  obj.root!.right = Node(4);
  obj.root!.right!.right = Node(5);
  obj.root!.right!.right!.right = Node(0);
  obj.root!.right!.left = Node(6);
  obj.root!.right!.left!.left = Node(9);
  obj.root!.right!.left!.right = Node(8);
  print("\n Before convert");
  print("In-order Data : ");
  obj.in_order(obj.root);
  print("\nPre-order Data : ");
  obj.pre_order(obj.root);
  print("\nPost-order Data : ");
  obj.post_order(obj.root);
  obj.convert(obj.root);
  print("\n After convert");
  print("In-order Data : ");
  obj.in_order(obj.root);
  print("\nPre-order Data : ");
  obj.pre_order(obj.root);
  print("\nPost-order Data : ");
  obj.post_order(obj.root);
}
main();

Output

 Before convert
In-order Data : 
3  7  2  1  9  6  8  4  5  0  
Pre-order Data : 
1  2  3  7  4  6  9  8  5  0  
Post-order Data : 
7  3  2  9  8  6  0  5  4  1  
 After convert
In-order Data : 
7  3  2  9  8  6  0  5  4  1  
Pre-order Data : 
1  2  3  7  4  6  9  8  5  0  
Post-order Data : 
7  3  8  9  0  5  6  4  2  1 




Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.

New Comment