# Babylonian method for square root

Here given code implementation process.

``````// C program
// babylonian method for square root
#include <stdio.h>

void findSquareRoot(double num)
{
double a = num;
double b = 1.0;
// Here precision (0.000001)
while ((a - b) > 0.000001)
{
a = (a + b) / 2.0;
b = num / a;
}
// Display given number
printf("\n Given Number : %lf", num);
// Display the calculate square root
printf("\n Square Root  : %lf\n", a);
}
int main(int argc, char
const *argv[])
{
// Test
findSquareRoot(64);
findSquareRoot(10.3);
findSquareRoot(17.50);
return 0;
}``````

#### Output

`````` Given Number : 64.000000
Square Root  : 8.000000

Given Number : 10.300000
Square Root  : 3.209361

Given Number : 17.500000
Square Root  : 4.183300``````
``````// Java program
// Babylonian method for square root
public class SquareRoot
{
public void findSquareRoot(double num)
{
double a = num;
double b = 1.0;
// Here precision (0.000001)
while ((a - b) > 0.000001)
{
a = (a + b) / 2.0;
b = num / a;
}
// Display given number
System.out.print("\n Given Number : " + num);
// Display the calculate square root
System.out.print("\n Square Root : " + a + "\n");
}
public static void main(String[] args)
{
// Test
}
}``````

#### Output

`````` Given Number : 64.0
Square Root : 8.00000000000017

Given Number : 10.3
Square Root : 3.209361314240489

Given Number : 17.5
Square Root : 4.183300132670613``````
``````// Include header file
#include <iostream>
using namespace std;

// C++ program
// Babylonian method for square root

class SquareRoot
{
public: void findSquareRoot(double num)
{
double a = num;
double b = 1.0;
// Here precision (0.000001)
while ((a - b) > 0.000001)
{
a = (a + b) / 2.0;
b = num / a;
}
// Display given number
cout << "\n Given Number : " << num;
// Display the calculate square root
cout << "\n Square Root : " << a << "\n";
}
};
int main()
{
// Test
return 0;
}``````

#### Output

`````` Given Number : 64
Square Root : 8

Given Number : 10.3
Square Root : 3.20936

Given Number : 17.5
Square Root : 4.1833``````
``````// Include namespace system
using System;
// C# program
// Babylonian method for square root
public class SquareRoot
{
public void findSquareRoot(double num)
{
double a = num;
double b = 1.0;
// Here precision (0.000001)
while ((a - b) > 0.000001)
{
a = (a + b) / 2.0;
b = num / a;
}
// Display given number
Console.Write("\n Given Number : " + num);
// Display the calculate square root
Console.Write("\n Square Root : " + a + "\n");
}
public static void Main(String[] args)
{
// Test
}
}``````

#### Output

`````` Given Number : 64
Square Root : 8.00000000000017

Given Number : 10.3
Square Root : 3.20936131424049

Given Number : 17.5
Square Root : 4.18330013267061``````
``````<?php
// Php program
// Babylonian method for square root
class SquareRoot
{
public	function findSquareRoot(\$num)
{
\$a = \$num;
\$b = 1.0;
// Here precision (0.000001)
while ((\$a - \$b) > 0.000001)
{
\$a = ((\$a + \$b) / 2.0);
\$b = (\$num / \$a);
}
// Display given number
echo "\n Given Number : ". \$num;
// Display the calculate square root
echo "\n Square Root : ". \$a ."\n";
}
}

function main()
{
}
main();``````

#### Output

`````` Given Number : 64
Square Root : 8.0000000000002

Given Number : 10.3
Square Root : 3.2093613142405

Given Number : 17.5
Square Root : 4.1833001326706``````
``````// Node Js program
// Babylonian method for square root
class SquareRoot
{
findSquareRoot(num)
{
var a = num;
var b = 1.0;
// Here precision (0.000001)
while ((a - b) > 0.000001)
{
a = ((a + b) / 2.0);
b = (num / a);
}
// Display given number
process.stdout.write("\n Given Number : " + num);
// Display the calculate square root
process.stdout.write("\n Square Root : " + a + "\n");
}
}

function main()
{
// Test
}
main();``````

#### Output

`````` Given Number : 64
Square Root : 8.00000000000017

Given Number : 10.3
Square Root : 3.209361314240489

Given Number : 17.5
Square Root : 4.183300132670613``````
``````#  Python 3 program
#  Babylonian method for square root
class SquareRoot :
def findSquareRoot(self, num) :
a = num
b = 1.0
#  Here precision (0.000001)
while ((a - b) > 0.000001) :
a = ((a + b) / 2.0)
b = (num / a)

#  Display given number
print("\n Given Number : ", num, end = "")
#  Display the calculate square root
print("\n Square Root : ", a )

def main() :
#  Test

if __name__ == "__main__": main()``````

#### Output

`````` Given Number :  64
Square Root :  8.00000000000017

Given Number :  10.3
Square Root :  3.209361314240489

Given Number :  17.5
Square Root :  4.183300132670613``````
``````#  Ruby program
#  Babylonian method for square root
class SquareRoot
def findSquareRoot(num)
a = num
b = 1.0
#  Here precision (0.000001)
while ((a - b) > 0.000001)
a = (a + b) / 2.0
b = num / a
end

#  Display given number
print("\n Given Number : ", num)
#  Display the calculate square root
print("\n Square Root : ", a ,"\n")
end

end

def main()
#  Test
end

main()``````

#### Output

`````` Given Number : 64
Square Root : 8.00000000000017

Given Number : 10.3
Square Root : 3.209361314240489

Given Number : 17.5
Square Root : 4.183300132670613
``````
``````// Scala program
// Babylonian method for square root
class SquareRoot
{
def findSquareRoot(num: Double): Unit = {
var a: Double = num;
var b: Double = 1.0;
// Here precision (0.000001)
while ((a - b) > 0.000001)
{
a = ((a + b) / 2.0);
b = (num / a);
}
// Display given number
print("\n Given Number : " + num);
// Display the calculate square root
print("\n Square Root : " + a + "\n");
}
}
object Main
{
def main(args: Array[String]): Unit = {
var task: SquareRoot = new SquareRoot();
// Test
}
}``````

#### Output

`````` Given Number : 64.0
Square Root : 8.00000000000017

Given Number : 10.3
Square Root : 3.209361314240489

Given Number : 17.5
Square Root : 4.183300132670613``````
``````// Swift 4 program
// Babylonian method for square root
class SquareRoot
{
func findSquareRoot(_ num: Double)
{
var a: Double = num;
var b: Double = 1.0;
// Here precision (0.000001)
while ((a - b) > 0.000001)
{
a = (a + b) / 2.0;
b = num / a;
}
// Display given number
print("\n Given Number : ", num, terminator: "");
// Display the calculate square root
print("\n Square Root : ", a );
}
}
func main()
{
// Test
}
main();``````

#### Output

`````` Given Number :  64.0
Square Root :  8.00000000000017

Given Number :  10.3
Square Root :  3.20936131424049

Given Number :  17.5
Square Root :  4.18330013267061``````
``````// Kotlin program
// Babylonian method for square root
class SquareRoot
{
fun findSquareRoot(num: Double): Unit
{
var a: Double = num;
var b: Double = 1.0;
// Here precision (0.000001)
while ((a - b) > 0.000001)
{
a = (a + b) / 2.0;
b = num / a;
}
// Display given number
print("\n Given Number : " + num);
// Display the calculate square root
print("\n Square Root : " + a + "\n");
}
}
fun main(args: Array < String > ): Unit
{
// Test
}``````

#### Output

`````` Given Number : 64.0
Square Root : 8.00000000000017

Given Number : 10.3
Square Root : 3.209361314240489

Given Number : 17.5
Square Root : 4.183300132670613``````

## Comment

Please share your knowledge to improve code and content standard. Also submit your doubts, and test case. We improve by your feedback. We will try to resolve your query as soon as possible.